Utilisateur:Åntøinæ/Brouillon

Une page de Wikipédia, l'encyclopédie libre.

La correction d'inclinaison est une manœuvre orbitale qui a pour but de changer l'inclinaison de l'orbite d'un objet. Cette manœuvre est aussi appelée changement de plan d'orbite car il s'agit de faire basculer le plan de l'orbite. Pour effectuer une correction d'inclinaison, il faut changer le vecteur vitesse (delta-v) à un des nœuds, c'est à dire à un des points où les orbites initiale et désirée intersectent. La ligne des nœuds orbitaux est définie par l'intersection de deux plans orbitaux.

En général un changement d'inclinaison demande une très grande quantité de delta-v et les missions essayent de les éviter si possible pour économiser le carburant. Typiquement cela est réalisé en lançant l'objet directement à l'inclinaison désirée, ou le plus près possible pour minimiser les corrections d'inclinaisons. L'assistance gravitationnelle est la manière la plus efficace d'effectuer un changement d'inclinaison important, mais est seulement effective lors des missions interplanétaires.

Efficacité[modifier | modifier le code]

The simplest way to perform a plane change is to perform a burn around one of the two crossing points of the initial and final planes. The delta-v required is the vector change in velocity between the two planes at that point.

However, maximum efficiency of inclination changes are achieved at apoapsis, (or apogee), where orbital velocity is the lowest. In some cases, it can require less total delta-v to raise the satellite into a higher orbit, change the orbit plane at the higher apogee, and then lower the satellite to its original altitude.[1]

For the most efficient example mentioned above, targeting an inclination at apoapsis also changes the argument of periapsis. However, targeting in this manner limits the mission designer to changing the plane only along the line of apsides.[réf. nécessaire]

For Hohmann transfer orbits, the initial orbit and the final orbit are 180 degrees apart. Because the transfer orbital plane has to include the central body, such as the Sun, and the initial and final nodes, this can require two 90 degree plane changes to reach and leave the transfer plane. In such cases it is often more efficient to use a broken plane maneuver where an additional burn is done so that plane change only occurs at the intersection of the initial and final orbital planes, rather than at the ends.[2]

L'inclinaison mêlée à d'autres éléments orbitaux[modifier | modifier le code]

An important subtlety of performing an inclination change is that Keplerian orbital inclination is defined by the angle between ecliptic North and the vector normal to the orbit plane, (i.e. the angular momentum vector). This means that inclination is always positive and is entangled with other orbital elements primarily the argument of periapsis which is in turn connected to the longitude of the ascending node. This can result in two very different orbits with precisely the same inclination.

Calculation[modifier | modifier le code]

In a pure inclination change, only the inclination of the orbit is changed while all other orbital characteristics (radius, shape, etc.) remains the same as before. Delta-v () required for an inclination change () can be calculated as follows:

where:

For more complicated maneuvers which may involve a combination of change in inclination and orbital radius, the delta-v is the vector difference between the velocity vectors of the initial orbit and the desired orbit at the transfer point. These types of combined maneuvers are commonplace, as it is more efficient to perform multiple orbital maneuvers at the same time if these maneuvers have to be done at the same location.

According to the law of cosines, the minimum Delta-v () required for any such combined maneuver can be calculated with the following equation [3]

Here and are the initial and target velocities.

Changement d'inclinaison d'orbite circulaire[modifier | modifier le code]

Where both orbits are circular (i.e. ) and have the same radius the Delta-v () required for an inclination change () can be calculated using:

where is the orbital velocity and has the same units as .[1]

Autres moyens de correction d'inclinaison[modifier | modifier le code]

Some other ways to change inclination that do not require burning propellant (or help reduce the amount of propellant required) include

  • aerodynamic lift (for bodies within an atmosphere, such as the Earth)
  • solar sails

Transits of other bodies such as the Moon can also be done.

None of these methods will change the delta-V required, they are simply alternate means of achieving the same end result and, ideally, will reduce propellant usage.

Notes et références[modifier | modifier le code]

  1. a et b Robert A Braeunig, « Basics of Space Flight: Orbital Mechanics » [archive du ] (consulté le )
  2. (en) Fernando Abilleira Broken-Plane Maneuver Applications for Earth to Mars Trajectories (rapport) (lire en ligne, consulté le )
  3. Steve Owens et Malcolm Macdonald, « Hohmann Spiral Transfer With Inclination Change Performed By Low-Thrust System », Advances in the Astronautical Sciences, vol. 148,‎ , p. 719 (lire en ligne, consulté le )

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Catégorie:Mécanique spatiale