Quasigroupe

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, un quasigroupe est un ensemble muni d'une loi de composition interne (un magma) pour laquelle (en pensant cette loi comme une multiplication), il est possible de diviser, à droite comme à gauche, le quotient à droite et le quotient à gauche étant uniques. En d'autre termes l'opération de multiplication à droite est bijective, de même que celle de multiplication à gauche. La loi n'est pas nécessairement associative, et si elle l'est, le quasigroupe est un groupe.

Présentation[modifier | modifier le code]

La table de Cayley d'une loi de groupe vérifie une propriété dite de réarrangement[réf. nécessaire] :

chaque élément du groupe apparait une fois et une seule dans chaque ligne et chaque colonne de la table.

Mais une loi dont la table satisfait cette propriété n'est pas nécessairement la loi d'un groupe. La loi obtenue est cependant « quasiment » celle d'un groupe, d'où, probablement, le nom de « quasigroupe » donné aux structures correspondantes.

La propriété de réarrangement peut s'exprimer de manière plus formelle :

  • dire qu'un élément apparait une fois et une seule sur chaque ligne revient à affirmer que pour tous x et z, l'équation   x * y = z a une et une seule solution en y ;
  • de même, dire qu'un élément apparait une fois et une seule sur chaque colonne revient à affirmer que pour tous y et z, l'équation   x * y = z a une et une seule solution en x.

Définition formelle[modifier | modifier le code]

Un quasigroupe est un magma (E , ✶ ) non vide tel que pour chaque couple (a, b) l'équation a * x = b a une unique solution en x et l'équation y * a = b possède une unique solution en y.

Un carré latin est une matrice n × n remplie avec n symboles différents d'une façon telle que chaque symbole apparaisse exactement une fois par ligne et une fois par colonne. La table d'un quasigroupe fini est un carré latin, et un carré latin est la table d'un quasigroupe fini.

Exemples[modifier | modifier le code]

Structures dérivées[modifier | modifier le code]

  • Un quasigroupe avec un élément neutre (nécessairement unique) est appelé une boucle (loop en anglais). D'après la définition des quasigroupes, tout élément d'une boucle a un inverse à droite et un inverse à gauche, uniques mais non nécessairement égaux.
  • Un Moufang ou une boucle de Moufang (en) est un quasigroupe (E, * ) dans lequel, pour tous a, b et c : ( a * b ) * ( c * a ) = ( a * ( b * c )) * a.Comme son nom le suggère, une boucle de Moufang est une boucle.

Principales propriétés[modifier | modifier le code]

  • Tout quasigroupe associatif est un Moufang, donc une boucle.
  • Toute boucle associative est un groupe.
  • Par conséquent, un quasigroupe est un groupe si et seulement si sa loi est associative.
  • La loi d'un quasigroupe est régulière (ou simplifiable).
En effet, si x * y = x * z, alors il existe c tel que c = x * y et c = x * z.
Mais d'après la propriété de réarrangement, l'équation c = x * y a une et une seule solution en y. Donc y = z et la loi est régulière à gauche.
On montre de manière analogue que la loi est régulière à droite.
  • La réciproque est valide dans le cas fini : un magma (E, * ) fini muni d'une loi de composition interne régulière est un quasigroupe.
  • Il existe des magmas infinis réguliers qui ne sont pas des quasigroupes.
Il suffit de considérer l'addition sur ℕ*. En effet, c'est un magma régulier car si a + x = a + y ou x + a = y + a, alors clairement x = y. Par contre, ce n'est pas un quasigroupe car 1 + x = 1 n'a aucune solution.
  • La « division » est toujours possible dans un quasigroupe.
Soit « • » la correspondance de E × E dans E définie par :
\forall x \in E , \forall y \in E , \forall z \in E , [ ( x , y ) \bullet z ] \Leftrightarrow [ z * y = x ].
Cette correspondance est intuitivement « l'opération inverse » de l'opération  * \,, autrement dit une « division »;
C'est une application car * est régulière. C'est donc une loi de composition interne : (E, • ) est un magma, et la « division » • s'applique donc à tous les couples de E2.

Voir aussi[modifier | modifier le code]


(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Quasigroup » (voir la liste des auteurs)