Polynôme de Laguerre

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, les polynômes de Laguerre, nommés d'après Edmond Laguerre (1834 - 1886), sont les solutions de l'équation de Laguerre :

x\,y'' + (1 - x)\,y' + n\,y = 0\,

qui est une équation différentielle linéaire du second ordre. Cette équation a des solutions non singulières seulement si n est un entier positif.

Ces polynômes, traditionnellement notés L_0, L_1,\ \dots, forment une suite de polynômes qui peut être définie par la formule de Rodrigues


L_n(x)=\frac{\mathrm{e}^x}{n!}\frac{d^n}{dx^n}\left(\mathrm{e}^{-x} x^n\right).

Ils sont orthogonaux les uns par rapport aux autres pour le produit scalaire défini par

\langle f,g \rangle = \int_0^\infty f(x) g(x) \mathrm{e}^{-x}\,dx.

La suite des polynômes de Laguerre est une suite de Sheffer.

Les polynômes de Laguerre apparaissent en mécanique quantique dans la partie radiale de la solution de l'équation de Schrödinger pour un atome à un électron[1].

Les physiciens utilisent souvent une définition des polynômes de Laguerre où ceux-ci sont multipliés par un facteur (-1)^n n!, obtenant des polynômes unitaires.

Les premiers polynômes[modifier | modifier le code]

Voici les premiers polynômes de Laguerre :

n L_n(x)\,
0 1\,
1 -x+1\,
2 \begin{matrix}\frac12\end{matrix} (x^2-4x+2) \,
3 \begin{matrix}\frac16\end{matrix} (-x^3+9x^2-18x+6) \,
4 \begin{matrix}\frac1{24}\end{matrix} (x^4-16x^3+72x^2-96x+24) \,
5 \begin{matrix}\frac1{120}\end{matrix} (-x^5+25x^4-200x^3+600x^2-600x+120) \,
6 \begin{matrix}\frac1{720}\end{matrix} (x^6-36x^5+450x^4-2400x^3+5400x^2-4320x+720) \,
Les six premiers polynômes de Laguerre

Propriétés[modifier | modifier le code]

La fonction génératrice pour les polynômes de Laguerre est

\frac{e^{-xt/(1-t)}}{1-t} = \sum_{n=0}^\infty L_n(x) t^n\,.

Le n-ième polynôme de Laguerre satisfait l'équation différentielle suivante :

x L_n''(x)+ (1-x)L_n'(x)+ n L_n(x)=0.\,

On a aussi la suite récurrente suivante :

(n+1)L_{n+1}(x)+ (x-2n-1) L_{n}(x)+nL_{n-1}(x)=0.\,

Les polynômes satisfont la propriété

x L_n'(x)-nL_{n}(x)+nL_{n-1}(x)=0,\,

Expression par une intégrale de contour[modifier | modifier le code]

Les polynômes peuvent être exprimés en termes d'une intégrale de contour

L_n(x)=\frac{1}{2\pi i}\oint\frac{e^{-xt/(1-t)}}{(1-t)\,t^{n+1}} \; dt

où le contour entoure l'origine une fois dans le sens trigonométrique.

Polynômes de Laguerre généralisés[modifier | modifier le code]

La propriété d'orthogonalité évoquée plus haut revient à dire que si X est une variable aléatoire distribuée exponentiellement avec la fonction densité de probabilité

f(x)=\left\{\begin{matrix} e^{-x} & \mbox{si}\ x>0, \\ 0 & \mbox{si}\ x<0, \end{matrix}\right.

alors

\mathbb{E}(L_n(X)L_m(X))=0\ \mbox{si}\ n\neq m.

La distribution exponentielle n'est pas la seule distribution Gamma. Une suite de polynômes orthogonaux par rapport à la distribution gamma dont la fonction densité de probabilité est, pour \alpha>-1,

f(x)=\left\{\begin{matrix} x^\alpha e^{-x}/\Gamma(1+\alpha) & \mbox{si}\ x>0, \\ 0 & \mbox{si}\ x<0, \end{matrix}\right.

(cf.fonction gamma) est donnée par la formule de Rodrigues pour les polynômes de Laguerre généralisés:

L_n^{(\alpha)}(x)={x^{-\alpha} e^x \over n!}{d^n \over dx^n} \left(e^{-x} x^{n+\alpha}\right) .

Ils sont parfois appelés les polynômes de Laguerre associés. On retrouve les polynômes de Laguerre simples en prenant α = 0 :

L^{(0)}_n(x)=L_n(x).

Les polynômes de Laguerre généralisés sont orthogonaux sur [0,\infty) par rapport à la fonction de poids x^\alpha e^{-x} :

\int_0^{\infty}e^{-x}x^\alpha L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)dx=\frac{\Gamma(n+\alpha+1)}{n!}\delta_{nm}.

Les polynômes de Laguerre généralisés obéissent à l'équation différentielle


x L_n^{(\alpha) \prime\prime}(x) + (\alpha+1-x)L_n^{(\alpha)\prime}(x) + n L_n^{(\alpha)}(x)=0.\,

Exemples de polynômes de Laguerre généralisés[modifier | modifier le code]

Les premiers polynômes de Laguerre généralisés sont

 L_0^{(\alpha)} (x) = 1
 L_1^{(\alpha)}(x) = -x + \alpha +1
 L_2^{(\alpha)}(x) = \frac{x^2}{2} - (\alpha + 2)x + \frac{(\alpha+2)(\alpha+1)}{2}
 L_3^{(\alpha)}(x) = \frac{-x^3}{6} + \frac{(\alpha+3)x^2}{2} - \frac{(\alpha+2)(\alpha+3)x}{2}
+ \frac{(\alpha+1)(\alpha+2)(\alpha+3)}{6}

Dérivées des polynômes de Laguerre généralisés[modifier | modifier le code]

Le calcul de la dérivée d'ordre k de la représentation en série d'un polynôme de Laguerre généralisé fois conduit à


\frac{\mathrm d^k}{\mathrm d x^k} L_n^{(\alpha)} (x)=(-1)^k L_{n-k}^{(\alpha+k)} (x).

Relation aux polynômes d'Hermite[modifier | modifier le code]

Les polynômes de Laguerre généralisés apparaissent dans le traitement de l'oscillateur harmonique quantique, à cause de leur relation aux polynômes d'Hermite, qui peuvent être exprimés par

H_{2n}(x) = (-1)^n\, 2^{2n} n!\, L_n^{(-1/2)} (x^2)

et

H_{2n+1}(x) = (-1)^n\, 2^{2n+1} n!\, x L_n^{(1/2)} (x^2)

où les H_n(x) sont les polynômes d'Hermite.

Relation aux fonctions hypergéométriques[modifier | modifier le code]

Les polynômes de Laguerre peuvent être reliés aux fonctions hypergéométriques, plus précisément aux fonctions hypergéométriques confluentes, par

L^{(\alpha)}_n(x) = {n+\alpha \choose n} M(-n,\alpha+1,x) =\frac{(\alpha+1)_n} {n!}  \,_1F_1(-n,\alpha+1,x)

(a)_n est le symbole de Pochhammer (qui, dans ce cas particulier, est utilisé pour représenter la factorielle croissante a(a+1)(a+2)...(a+n-1)).

Note et références[modifier | modifier le code]

  1. (en) The Legendre and Laguerre Polynomials & the Elementary Quantum Mechanical Model of the Hydrogen Atom, par Timothy Jones