Cissoïde

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher


La cissoïde ou (courbe) cissoïdale de deux courbes (C1) et (C2) par rapport à un point fixe O est le lieu géométrique des points P tels que :

\overrightarrow{OP}=\overrightarrow{OP1}+\overrightarrow{OP2}

où P1 est un point de (C1) et P2 un point de (C2), P1 et P2 étant alignés avec O.

La cissoïde peut aussi être vue comme la courbe médiane de pôle O des courbes C'1 et C'2, images de C1 et C2 par une homothétie de centre O et de rapport 2.

Elle est parfois définie comme l'ensemble des points P tels que :

\overrightarrow{OP}=\overrightarrow{P_1P_2}

où P1 est un point de (C1) et P2 un point de (C2), P1 et P2 étant alignés avec O. Cette définition est équivalente à la première, à condition de remplacer C1 par sa symétrique par rapport à O.

Étymologie et histoire[modifier | modifier le code]

Le terme cissoïde provient du grec kissos lierre et eidos forme. En effet, la cissoïde de Dioclès rappelle la forme d'une feuille de lierre.

Définition mathématique[modifier | modifier le code]

L'équation polaire de la cissoïde de pôle O des courbes R = f1(\theta) et R=f2(\theta) est donné par:

R=f1(\theta)+f2(\theta)

Une cissoïde peut aussi être décrite comme la différence au lieu de la somme de 2 courbes.

Propriétés[modifier | modifier le code]

  • Si (C1) est un cercle, O un point du cercle et (C2) la tangente au cercle en un point diamétralement opposé à O, la cissoïde porte le nom de cissoïde droite ou cissoïde de Dioclès
  • Si (C1) et (C2) sont deux droites parallèles, la cissoïdale est aussi une droite parallèle.
  • Si (C1) et (C2) sont deux droites sécantes, la cissoïdale est une hyperbole passant par O, d'asymptotes C1 et C2.
  • Si (C2) est un cercle et que le point fixe O est le centre de ce cercle, la cissoïdale est une conchoïde de la courbe (C1).
  • Si (C1) est une conique, (C2) est une droite, et que le point fixe O est sur la conique, on obtient une cissoïde de Zahradnik.
  • Si (C1) et (C2) sont des cercles et le point fixe O est sur l'un des cercles, on obtient une quartique bicirculaire rationnelle.

Liens externes[modifier | modifier le code]