Spirale

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Spirale (homonymie).
La spirale est une forme fréquente dans le monde animal et végétal, chez les gastéropodes par exemple

En mathématiques, une spirale est une courbe qui commence en un point central puis s'en éloigne de plus en plus, en même temps qu'elle tourne autour.

Le terme spirale se réfère en général à une courbe plane. Lorsqu'une spirale se développe en trois dimensions, on parle plutôt d'hélice.

Étymologie[modifier | modifier le code]

ContextFreeTutorial 01Spiral.png
La spirale est un des motifs qui semblent avoir fasciné l'homme depuis la préhistoire, des gravures celtes aux tatouages polynésiens
Escaliers hélicoïdaux formant une spirale vue de dessus ou d'en bas

En latin spira ou en grec ancien σπείρα / speira, ce mot désigne un enroulement.

Dans le langage courant, et notamment en dessin et en architecture les adjectifs spiral et spiralé désignent toutes les formes évoquant la spirale mathématique (escalier en spirale...) ou comprenant une suite de circonvolutions.

Spirales à deux dimensions[modifier | modifier le code]

Une spirale à deux dimensions se décrit facilement à l'aide de coordonnées polaires : le rayon r est donné par une fonction continue et monotone de l'angle θ. Le cercle en est alors un cas dégénéré.

Il existe plusieurs types de spirales à deux dimensions. Voici les plus importantes :

Une spirale a nécessairement une infinité de spires distinctes ; le rayon polaire peut croître indéfiniment avec l'angle, ou tendre vers une limite finie ; dans ce dernier cas, la spirale est asymptote à un cercle et même parfois à une droite (spirale hyperbolique).

Spirales à centres multiples[modifier | modifier le code]

L'éloignement progressif d'une spirale dépend du nombre des centres qui ont servi à la former. Il y a des spirales :

  • à 2 centres qui sont situés sur une même ligne,
  • à 3 centres qui sont situés aux trois sommets d'un triangle équilatéral,
  • à 4 centres qui sont situés aux quatre sommets des angles d'un carré.

En fait on peut construire des spirales avec autant de centres que l'on veut en se servant de figures régulières, pentagone hexagone ..etc..Plus les côtés sont nombreux et plus on tend vers une développante de cercle.

Dans le domaine de la biologie[modifier | modifier le code]

Structure 3D, de la macromolécule hélicoïdale de l'ADN, support de l'hérédité

La spirale hélicoïde (ou une structure moins visible mais spiralée, généralement construite selon la suite de Fibonacci, est fréquente dans le monde vivant.

Elle est bien connue et bien visible dans les formes de coquilles d'escargots, un peu moins voyante mais fréquente chez les végétaux, avec par exemple la disposition spiralée des graines du tournesol ou la structure du chou brocoli, ou encore de la pomme de pin ou encore dans la forme prise par les tiges en croissance de certaines plantes grimpantes.

La spirale est également présente dans le monde animal (certains tissus musculaires) et dans le monde microscopique chez certaines bactéries. Les bactéries spiralées sont souvent pathogènes pour divers animaux et certaines le sont pour l'homme (ex spirochètes responsables de la syphilis, ou bactéries du genre Borrelia responsables de la maladie de Lyme, ou chez les Campylobacter [1], Campylobacter pyloridis responsables d'ulcères de l'estomac. Chez ces bactéries, la morphologie spiralée est souvent associée à une motilité particulière, adaptées au mucus[1] ou à d'autres environnements mucilo-gélatineux (ex : intérieur de l'œil pour certaines borrélies). La forme spiralée (en tire-bouchon) et une motilité particulière de ces organismes semblent leur donner un avantage sélectif dans les environnements visqueux et mucilagineux [1].

Dans des dimensions encore plus petites, l'ADN est lui-même spiralé (quand il n'est pas déroulé), mais il existe aussi chez les bactéries des ADN circulaires (en anneau).

Construction[modifier | modifier le code]

Un procédé simple permet de tracer d'un mouvement continu une spirale relativement régulière, par exemple pour la décoration de jardins : il suffit d'enrouler un cordeau attaché à un piquet planté au centre désigné de la spirale. En déroulant ensuite le cordeau autour du piquet en le gardant tendu, une pointe maintenue verticale et attachée au bout de ce cordeau permet de tracer au sol une spirale au fur à mesure que le cordeau se déroule. Dans ce procédé, les spires de la ligne tracée sont évidemment d'autant plus écartées, que le piquet central est plus gros. On obtient une (approximation de) développante du cercle

Construction d'une spirale à deux centres sur une feuille de papier[modifier | modifier le code]

Avec un compas et une règle :

  1. Tracer une droite qui partage la feuille en deux parties égales.
  2. Placer deux points A1 et A2 sur la droite aux environs du centre de la feuille. La distance entre le point A1 et le point A2 paramètre la concentration de la courbe. Plus cette distance est courte, plus la spirale sera concentrée.
  3. Piquer le compas sur le point A1. L'écarter de la distance A1A2.
  4. Tracer le demi-cercle d'origine A2. Noter A3 le point issu de l'intersection entre le demi-cercle et notre droite.
  5. Piquer le compas sur le point A2. L'écarter de la distance A2A3.
  6. Tracer le demi-cercle d'origine A3. Noter A4 le point issu de l'intersection entre le demi-cercle et notre droite.
  7. Piquer le compas sur le point A3. L'écarter de la distance A3A4.
  8. Tracer le demi-cercle d'origine A4. Noter A5 le point issu de l'intersection entre le demi-cercle et notre droite.
  9. etc.

Le résultat est une spirale construite à partir de demi-cercles dont le rayon augmente de la distance A1A2 à chaque fois.

Plusieurs variantes sont possibles et combinables :

  • le rayon de chaque demi-cercle n'est pas augmenté d'une valeur constante, mais double ;
  • tracer des quarts de cercles au lieu de demi-cercles (nécessite deux droites perpendiculaires). Ou des tiers de cercles, avec un triangle équilatéral qui détermine trois demi-droites.

Exemples[modifier | modifier le code]

Spirale triple, constituant la figure du triskel des celtes.
Mouvement contraint de 2 spirales d'Archimède l'une dans l'autre, qui évoque schématiquement le principe de certaines pompes. Le point de contact entre les 2 spirales se déplace lui-même en suivant le dessin de la spirale rouge.

En botanique, la spirale est présente dans la disposition des graines du tournesol, ou dans le point d'insertion des feuilles sur la tige (l'angle dièdre passant par l'axe de la tige et deux points qui se succèdent est la divergence, valeur caractéristiques de l'espèce).

Culture[modifier | modifier le code]

  • La spirale est un motif fréquent dans la décoration (frises, bijoux, tissus, dessins, tatouages, carrelages, etc.).
  • Le Père Ubu d'Alfred Jarry porte sur le ventre une spirale appelée « gidouille ».
  • Regarder une spirale qui tourne provoque un effet d'optique, qui fascine et est réputé faciliter l'hypnose. C'est un thème souvent exploité dans les dessins animés.
  • En bande dessinée, les yeux d'un personnage dessinés en spirale évoquent — selon le contexte — la confusion du personnage, le fait qu'il soit sonné, fou, etc.
  • Un manga d'horreur One-shot de Junji Ito appelé Uzumaki (spirale en japonais) a pour thématique l'obsession des spirales.
  • La spirale est utilisée dans la série américaine Teen Wolf pour désigner la vengeance d'un loup-garou. Peter Hale l'utilise dans la saison 1 pour se venger de Kate Argent. Elle est également utilisée dans la saison 3A.
  • Le sound system britannique Spiral Tribe doit son nom à l'un de ses fondateurs, Mark Harrison, fasciné par la symbolique de la spirale.

Notes et références[modifier | modifier le code]

  1. a, b et c Stuart L. Hazell, drian Lee, Lynette Brady et William Hennessy (1986), Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an Environment of Mucus as Important Factors in Colonization of the Gastric Epithelium  ; Journal of Infectious disease (J Infect Dis), 153 (4): 658-663. doi: 10.1093/infdis/153.4.658 (résumé)

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

  • Spirale (page du site Mathcurve.com)