Son (physique)

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche
Propagation d'ondes sphériques de pression dans un fluide.

Le son est une vibration mécanique d'un fluide, qui se propage sous forme d'ondes longitudinales grâce à la déformation élastique de ce fluide. Les êtres humains, comme beaucoup d'animaux, ressentent cette vibration grâce au sens de l'ouïe.

L'acoustique est la science qui étudie les sons ; la psychoacoustique étudie la manière dont les organes du corps humain ressentent et l'être humain perçoit et interprète les sons.

Propagation du son[modifier | modifier le code]

Dans un milieu fluide compressible une variation de pression se propage sous forme d'une onde. Le son ne se propage pas dans le vide : il faut de la matière dont la vibration puisse se propager en ondes sonores. L'air, dans lequel vivent les humains, est un tel milieu, dont les variations de la pression constituent le son. L'amplitude de la variation de pression est faible par rapport à la pression statique (pression atmosphérique) ; pour qu'elle soit perceptible, il faut qu'elle soit suffisamment rapide et répétée.

On appelle source sonore un objet vibrant, comme un instrument de musique ou un haut-parleur, à l'origine d'une vibration de l'air. La perturbation se propage, mais les particules d'air oscillent seulement de quelques micromètres autour d'une position stable, de la même façon que lorsqu'on jette une pierre dans l'eau, les vagues se déplacent en s'éloignant du point de chute, mais l'eau reste au même endroit, elle ne fait que se déplacer verticalement et non suivre les vagues (un bouchon placé sur l'eau reste à la même position sans se déplacer). Dans les fluides, l'onde sonore est longitudinale, c'est-à-dire que les particules vibrent parallèlement à la direction de déplacement de l'onde.

Les solides, en vibrant, peuvent transmettre un son. La vibration s'y propage, comme dans les fluides, avec une faible oscillation des atomes autour de leur position d'équilibre, résultant en une contrainte du matériau, équivalent à la pression dans un fluide, mais plus difficile à mesurer. La rigidité du matériau permet la transmission d'ondes de contraintes transversales. De même, quoique dans une moindre mesure, la viscosité d'un fluide peut modifier, particulièrement dans des conditions extrêmes, les équations de propagation calculées pour un gaz parfait.

Vitesse[modifier | modifier le code]

La vitesse du son ou célérité du son[a] du son dépend de la nature, de la température et de la pression du milieu.

Le modèle mathématique du gaz parfait donne un résultat approximatif pour la propagation dans l'air sec. Il aboutit à une formule où la vitesse est proportionnelle à la racine carrée de la température absolue, en kelvins[1] :

Pour des températures ordinaires dans les lieux habités la formule

est la température en degrés Celsius

permet un calcul rapide. Le résultat de ces deux approximations s'éloigne de moins de 1 m/s de la vitesse du son dans l'air sec à la pression atmosphérique normale entre −25 et +35 °C calculée avec plus de précision.

Vitesse du son selon la température et l'humidité

L'assimilation de l'air sec à un gaz parfait aboutit à des divergences avec les valeurs mesurées, particulièrement à haute pression et à basse température. Des calculs plus précis ou valides sur un plus large intervalle doivent considérer les relations plus complexes qui existent dans un gaz réel.

L'humidité de l'air augmente légèrement la vitesse du son. L'air chaud peut contenir plus de vapeur d'eau ; la variation, exponentielle[2] est insensible en dessous de 10 °C. À 30 °C, la vitesse du son dans un air à une humidité relative de 85% est supérieure de 2 m/s à celle de l'air sec[3].

La variation de la vitesse du son dans l'air a parfois une importance pratique considérable. En acoustique musicale, cette vitesse détermine la fréquence de l'onde sonore qui sort d'un tuyau résonnant comme un tuyau d'orgue. Dans les laboratoires, la mesure de la vitesse du son dans diverses conditions est un moyen d'accéder à des caractéristiques d'un matériau.

La vitesse du son augmente :

Dans l'eau, à la fois beaucoup plus dense et beaucoup moins compressible que l'air, la vitesse du son est d'environ 1 500 m s−1[b]. Dans d'autres milieux, les vibrations peuvent se propager encore plus rapidement. Dans l'acier, les vibrations se propagent de 5600 à 5 900 m s−1.

Intensité[modifier | modifier le code]

La puissance d'une onde sphérique se répartit sur une sphère dont la superficie est proportionnelle au carré du rayon. En conséquence, la puissance sonore par unité de surface diminue en proportion du carré de la distance à la source, si aucun obstacle ne vient dévier le son.

La plupart du temps, l'atténuation par absorption dans le milieu de propagation varie selon la fréquence. Dans l'air, en 500 m, l'amplitude d'une onde à 8 000 Hz est dix fois plus affaiblie qu'une onde à basse fréquence. On n'en connait que certaines causes. La viscosité de l'air provoque une atténuation proportionnelle au carré de la fréquence ; des échanges thermiques causent un affaiblissement supplémentaire, proportionnel à la fréquence et variable selon la composition de l'air, notamment selon son humidité. La mesure montre une atténuation supplémentaire, qu'on n'a pas intégrée aux modèles théoriques[4],[5].

L'étude de la propagation dans un endroit donné s'effectue à partir de la pression acoustique, qui exprime la puissance sonore, qu'on exprime souvent en décibels par rapport à la limite de perception, ou à partir de l'intensité acoustique, qui exprime la quantité et la direction de la puissance qui se transfère par la vibration du milieu. On construit ainsi un modèle mathématique du champ acoustique.

Dans l'atmosphère[modifier | modifier le code]

Les conditions atmosphériques et météorologiques influent sur la propagation acoustique locale et à grande distance[6],[7].

Pour prévoir la propagation du son, il convient de connaître la température moyenne, mais aussi la structure thermique et l'hygrométrie de la masse d'air traversée ainsi que la direction du vent.

  • Le son se propage moins bien à l'horizontale que sous des angles montants à cause du changement de densité. La conception des théâtres en plein air depuis l'Antiquité tient compte de propriété.
  • Une couche d'inversion basse constitue un gradient de température qui dévie par réfraction vers le sol les ondes montantes, agissant comme un guide d'onde qui porte le son. Par exemple, à la suite du refroidissement nocturne, il est possible d'entendre un train à 5 km d'une voie ferrée sous le vent malgré les obstacles.
  • l'humidité augmente la vitesse propre du son.
  • l'atténuation est nettement moindre sous le vent tant que son régime au sol n'est pas trop turbulent.
  • La vitesse du vent augmente avec la hauteur au dessus du sol. Ce gradient de vent couche l'onde sonore qui se propage dans le sens du vent en la rabattant vers le sol et à l'inverse, l'onde voyageant contre le vent s'entend beaucoup moins au sol car le même gradient la dévie vers le ciel.

Dans des milieux hétérogènes[modifier | modifier le code]

La présence de gouttelettes d'eau dans l'atmosphère, comme dans les nuages et les brumes, comme celle de cristaux de glace, en cas de neige, change considérablement la propagation du son. Elle se traduit par une diminution et une dispersion de la vitesse et une atténuation d'autant plus marquée que la fréquence est basse[8].

Dans des milieux hétérogènes, le son subit des réflexions et des réfractions sur les interfaces, qui aboutissent à des diffusions et des absorptions qui sont à la base de l'isolation phonique.

Tonnerre[modifier | modifier le code]

On peut arrondir la vitesse du son à un kilomètre toutes les trois secondes afin de calculer assez facilement, bien qu'approximativement, la distance qui sépare l'observateur d'un éclair pendant un orage. En effet, les éclairs sont suffisamment proches pour qu'on puisse considérer en percevoir la lumière instantanément. Chaque période de trois secondes qu'il faut ensuite attendre pour entendre le tonnerre représente donc à peu près un kilomètre. Ainsi, pour une attente de 8 secondes, la distance qui sépare l'observateur de l'éclair est de 8 × 340 = 2 720 m ; ou, plus simplement 2 kilomètres deux tiers.

Étant donné la méthode d'estimation, plus de précision est illusoire. Même sans tenir compte du temps de réaction humaine (si on comptait, par exemple, le temps écoulé sur un enregistrement vidéo), il est improbable que dans une atmosphère perturbée par des vents violents et des différences de température et d'humidité considérables l'onde sonore se déplace toujours en ligne droite et à la même vitesse[9].

Ouïe[modifier | modifier le code]

Tout être vivant doté d'une ouïe peut définir un spectre sonore ; de nombreuses espèces utilisent le son pour la communication entre individus. La plage de fréquences audible varie selon les espèces. Tandis que les humains entendent les sons jusque vers 15 kHz[10], parmi les mammifères :

Certains animaux utilisent leur aptitude à couvrir une large bande de fréquences à des fins diverses[réf. souhaitée] :

  • les éléphants utilisent les infrasons pour communiquer à plusieurs kilomètres de distance[réf. souhaitée] ;
  • les dauphins communiquent grâce aux ultrasons (100 kHz)[réf. souhaitée] ;
  • les chauve-souris et les dauphins émettent des ultrasons avec leur système d'écholocalisation leur permettant de se déplacer et de chasser dans le noir total[réf. souhaitée] ;
  • Les baleines, grâce à leur aptitude à capter les infrasons plus bas que les basses profondes, qui de plus, se propagent beaucoup plus vite dans l'eau, pourraient éventuellement rendre service pour prévenir d'un tremblement de terre, éruption volcanique ou avalanches, en observant leurs réactions[11].

Les sons que perçoivent les oiseaux recoupent largement ceux qu'entendent les humains, et ils l'utilisent pour la communication.

Les poissons perçoivent les vibrations de l'eau. Pour plusieurs espèces, la perception de la direction d'origine est améliorée par une longue rangée de récepteurs placés sur la ligne médiane. Le son est utile tant aux prédateurs qu'aux proies, pour chasser ou s'échapper. Les fréquences concernées sont souvent imperceptibles aux humains [réf. souhaitée].

Audition humaine[modifier | modifier le code]

Comme pour tous les phénomènes perçus, le temps joue un rôle fondamental. Le son étant une variation de la pression, et l'information sonore une variation de cette variation, l'impression sonore dépend à plusieurs égards du temps. Le son étant aussi une onde qui se propage dans l'espace au cours du temps, il existe des relations étroites entre l'espace et le temps, tant dans l'étude du son que dans sa perception.

On distingue plusieurs caractères du son :

  • la direction d'origine ;
  • l'intensité, dite aussi volume sonore ou sonie ;
  • la hauteur, qui se décompose en hauteur tonale et hauteur spectrale ;
  • le timbre, qui comprend la variation caractéristique de l'émission sonore dans le temps.

Il suffit qu'un de ces caractères varie, les autres restant inchangés, pour qu'on perçoive une différence. La répétition d'une forme dans le temps entraîne la notion de rythme. Par ailleurs, les êtres humains sont capables de distinguer et de suivre une émission sonore dotée d'une certaine continuité de caractères au milieu d'une quantité d'autres (effet cocktail party).

Intensité, sonie[modifier | modifier le code]

La psychoacoustique étudie l'intensité sonore ressentie en présence d'un son physique donné. Cette impression de son fort ou doux (les musiciens disent forte ou piano) dépend principalement de la valeur efficace de la pression acoustique, qui est la petite variation de pression atmosphérique qui définit le son.

On peut utiliser deux grandeurs, liées entre elles, pour exprimer le niveau sonore : l'intensité acoustique, en watts par mètre carré, ou la pression acoustique, en pascals (newton par mètre carré, N.m-2). On mesure la pression acoustique en un point avec un sonomètre ; l'intensité acoustique, qui inclut la direction de propagation de l'onde, est moins directement reliée à la perception[c]. Moins accessible à la mesure, elle sert pour les calculs d'acoustique.

Cependant, on utilise rarement ces unités physiques dans la communication courante :

  • il est peu commode de représenter des valeurs de pression acoustique en pascals (Pa) étalées sur une échelle de un à un million, des sons les plus faibles aux plus forts, et moins encore de représenter les intensités, étalées sur une échelle de un à mille milliards ;
  • la sensibilité de l'oreille est relative, c'est-à-dire qu'une augmentation de la pression acoustique de 1 à 1,5 Pa est perçue comme semblable à une augmentation de 0,1 à 0,15. Ce qui compte, c'est le multiplicateur (dans les deux cas, 1,5, +50 %).

La pression sonore et l'intensité s'expriment souvent en décibels (dB). C'est une grandeur sans dimension, dix fois le logarithme décimal du rapport de puissance entre une grandeur caractéristique du son étudié et celle d'un son de référence. Ces valeurs de référence sont, pour l'intensité acoustique, I0 = 1 × 10−12 W m−2 (un picowatt par mètre carré) et pour la pression acoustique P0 = 2 × 10−5 Pa (20 micropascals). Un décibel correspond à peu près à la plus petite variation de volume sonore perceptible par un humain. Le niveau 0 dB correspond à un son pratiquement imperceptible. Tous les niveaux sonores sont donc des nombres positifs.

Les décibels se réfèrent au logarithme décimal de la puissance. L'intensité acoustique est une puissance par mètre carré, donc multiplier l'intensité acoustique par 10, c'est augmenter le niveau sonore de 10 dB, la multiplier par 100, c'est augmenter le niveau de 20 dB, etc. La puissance acoustique est proportionnelle au carré de la pression : multiplier la pression acoustique par 10, c'est multiplier la puissance par 100, donc augmenter le niveau de 20 dB, et multiplier la pression acoustique par 100, c'est multiplier la puissance par dix mille, et ajouter 40 dB au niveau.

Le niveau de pression acoustique ne donne qu'une première idée de la sonie ou bruyance (sensation sonore perçue). La sensibilité de l'oreille varie selon la fréquence du son ; l'oreille est plus sensible aux fréquences moyennes. Pour se rapprocher de cette sensibilité, le signal électrique qui représente la pression acoustique peut être filtré. De nombreuses lois et règlements imposent un filtre à pondération « A ». On parle alors de décibel pondéré A (dB A).

Le volume d'un son, c'est-à-dire la sensation sonore, dépend de la puissance transmise aux oreilles des auditeurs. Pour l'évaluer, on utilise un microphone qui transforme la pression acoustique en un signal électrique que l'on mesure. La grandeur qui reflète le niveau sonore est la valeur efficace de la pression acoustique ou de la tension électrique qui la représente, qui est la valeur continue qui produit la même puissance que le signal. La valeur efficace est la racine carrée de la moyenne quadratique des valeurs du signal, dite aussi valeur RMS (Root Mean Square).

Dans les études de protection contre les bruits, on considère :

  • les valeurs efficaces pondérées en fréquence sur un petit espace de temps ;
  • le cumul des valeurs efficaces pondérées en fréquence sur le temps d'exposition ;
  • les valeurs de crête, qui peuvent, si elles sont extrêmes, occasionner un traumatisme, sans pour autant affecter les valeurs efficaces si elles sont à la fois brèves et rares.

Toutes ces mesures se réalisent sur un point avec un sonomètre. Mais le son se propage en ondes dans l'atmosphère dans toutes les directions. L'étude d'un son inclut l'étude de sa propagation dans les trois dimensions, et pour un point donné, la mesure peut inclure celle de la direction de propagation (voir Intensité acoustique).

Fréquence et hauteur[modifier | modifier le code]

Les physiologistes s'accordent à dire que l'oreille humaine moyenne ne perçoit les sons que dans une plage de fréquences allant d'environ 16 Hz pour les basses ou graves profondes à 15 à 18 kHz pour les aiguës les plus fines et élevées[12].

La sensibilité diminue progressivement aux fréquences extrêmes et varie selon les individus, la perception des aiguës diminue notamment avec l'âge, et celle des graves se confondant finalement avec celle des vibrations, on ne peut désigner de limite absolue :

  • en dessous de 16 Hz, les vibrations du milieu se nomment infrasons ;
  • au-dessus de 20 kHz, soit 20 000 Hz, il s'agit d'ultrasons ;
  • au-dessus de 1 GHz, soit 1 000 000 000 Hz, la dénomination est hypersons.

Le spectre sonore est directement lié à la sensation d'acuité d'un son, qui s'exprime en disant que le son est plus « aigu », quand le spectre est centré sur les hautes fréquences, ou plus « grave » ou « sourd » dans le cas contraire. Cette sensation relativement imprécise s'étend des sons les plus graves, vers 16 Hz, aux plus aigus, vers 15 000 Hz.

Si le son est harmonique, c'est-à-dire qu'il contient principalement des fréquences approximativement multiples d'une fondamentale audible, cette fréquence, telle qu'elle s'exprime en hertz (Hz), détermine sa hauteur tonale. La perception d'une hauteur tonale s'exerce pour des fréquences fondamentales comprises entre environ 30 Hz et 5 000 Hz. Elle s'exprime par la possibilité de reproduire la note en la chantant ; une personne entraînée au solfège peut en dire le nom[d].

Les humains identifient assez bien la répartition des fréquences, et dans les sons harmoniques, celle-ci est un élément important du timbre musical. La tonie discrimine finement des fréquences proches, bien que, si le spectre est riche en harmoniques, les erreurs d'une octave soient plus fréquentes que les autres. On peut créer des illusions auditives comme celle de la gamme de Shepard, qui semble monter éternellement ses degrés, en jouant sur ces deux aspects de la perception des fréquences sonores[13].

Timbre[modifier | modifier le code]

Le timbre est ce qui dans le signal acoustique permet d'identifier la source[14].

Les éléments physiques du timbre comprennent :

  • la répartition des fréquences dans le spectre sonore ;
  • les relations entre les parties du spectre, harmoniques ou non ;
  • les bruits colorés existant dans le son (qui n'ont pas de fréquence particulière, mais dont l'énergie est limitée à une ou plusieurs bandes de fréquence) ;
  • l'évolution dynamique globale du son ;
  • l'évolution dynamique de chacun des éléments les uns par rapport aux autres.

La sélection des éléments pertinents est une question psychoacoustique.

Étude des signaux acoustiques[modifier | modifier le code]

Tous les signaux peuvent être définis et analysés soit dans l'espace temporel, soit dans l'espace fréquentiel. Dans le premier cas, on étudie l'histoire de la valeur du signal. On a une idée précise du temps, mais aucune de la fréquence.

Définir un signal dans l'espace fréquentiel, c'est dire quel est son spectre, calculé au moyen de la transformation de Fourier. Le spectre d'un signal représente les fréquences des différentes sinusoïdes ou « sons purs » qui, si on les ajoutait, le reconstitueraient. Ces composantes d'un son complexe sont appelés partiels. Lorsque ces fréquences sont des multiples d'une même fréquence, appelée fondamentale, les autres sont des harmoniques. Si les fréquences présentes sont parfaitement connues, on n'a aucune idée de la valeur de la pression acoustique à un moment donné. Le spectre présente chaque valeur sous forme d'une « raie » dont la hauteur ou la couleur varie avec son amplitude. Le spectre d'un son pur présente une seule raie.

Sonagramme de notes jouées au piano.

Dans ces études, on fait comme si le signal était commencé depuis toujours et continuait à l'infini. Mais les signaux sonores réels commencent et finissent, et on s'intéresse en pratique à la fois aux fréquences qu'il contient et au moment où on peut les détecter. Un sonagramme représente les fréquences présentes et leur intensité en fonction du temps. La représentation fait l'objet d'un compromis. On ne peut calculer les fréquences avec précision, et donc discriminer deux fréquences proches, qu'avec une durée suffisamment longue ; mais on ne peut situer les événements sonores dans le temps avec précision que si la durée est courte. Le produit des incertitudes temporelle et fréquentielle est constant[15].

On étudie le son soit comme support d'une transmission d'information comme la parole ou la musique, soit comme nuisance (bruit). Pour ce faire, on génère des signaux acoustiques, dont on connaît bien les caractéristiques à l'émission, et on examine ce qu'ils deviennent en passant par le système qu'on étudie, qui pourrait être par exemple un mur anti-bruit, ou un hall où des messages doivent être diffusés, une salle de concert, un studio d'enregistrement.

On étudie la réponse acoustique des systèmes en analysant leur réponse à trois grandes classes de signaux :

  • les signaux périodiques, dont la forme se répète à l'identique à l'infini dans le temps, servent à l'étude de la réponse des systèmes dans l'espace fréquentiel ;
  • les signaux aléatoires, qui n'ont pas de caractère périodique, parmi lesquels on s'intéresse principalement aux signaux aléatoires ergodiques, qui ont des caractéristiques statistiques stables dans le temps[e] ;
  • les signaux impulsionnels : qui sont brefs et ne se répètent pas dans le temps. Ils permettent l'étude de la réponse des systèmes dans l'espace temporel.

L'électronique numérique a permis de créer des signaux qui participent de ces trois catégories, les chirps ((en) pépiements), qui permettent l'étude automatisée des caractéristiques d'un local ou d'un matériau. Connus et répétables précisément, l'étude de leur modification par le passage dans le milieu étudié donne rapidement des données sur des propriétés acoustiques qui vont de l'amortissement et la bande passante à la réverbération.

Notes et références[modifier | modifier le code]

  1. La célérité est la vitesse de propagation d'un phénomène ondulatoire. La célérité du son (« Trésor informatisé de la langue française ») ; voir aussi Richard Taillet, Loïc Villain et Pascal Febvre, Dictionnaire de physique, Bruxelles, De Boeck, , p. 97.
  2. Dépendant de la pureté de l'eau, salée ou non, de sa température et de sa pression.
  3. En présence d'ondes stationnaires, une partie de la pression acoustique ne correspond pas à un transfert d'énergie. L'intensité acoustique peut être nulle ou faible, alors que la pression acoustique est élevée.
  4. Voir les articles Psychoacoustique et Gamme tempérée > Comparaison de 3 systèmes de division de l'octave.
  5. Le « bruit blanc » et le « bruit rose » qu'utilisent les scientifiques et certains artistes sont conçus pour être des signaux aléatoires ergodiques.

  1. Antonio Fischetti, Initiation à l'acoustique : Écoles de cinéma — BTS audiovisuel, Paris, Belin, , 287 p., p. 10 à 15.
  2. (en) Allan J. Zuckerwar, Handbook of the Speed of Sound in Real Gases : Speed of Sound in Air, vol. 3, Elzevier, , 289 p. (présentation en ligne), p. 6
  3. (en) National physics laboratory (Royaume-Uni), « Calculation of speed of sound » d'après (en) Owen Cramer, « The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration », J. Acoust. Soc. Am., no 93,‎ , p. 2510-2525 (présentation en ligne).
  4. Patrice Bourcet et Pierre Liénard, « Acoustique fondamentale », dans Denis Mercier (direction), Le livre des techniques du son, tome 1 - Notions fondamentales, Paris, Eyrolles, , p. 38-39.
  5. Société française d'acoustique, « Absoptionatmosphérique », (consulté le 7 avril 2019).
  6. Bérengier M., Zouboff V., Bertrand J. et Curran F., Propagation acoustique à grande distance : Influence des conditions atmosphériques, 1er Congrès Français d’Acoustique, Lyon, 1990
  7. AFNOR, Norme AFNOR XPS 31 133, Acoustique, - Bruit des infrastructures de transports terrestres - Calcul de l’atténuation du son lors de sa propagation en milieu extérieur, incluant les effets météorologiques, Paris, 2001
  8. Michaël Baudoin, Jean-Louis Thomas, François Coulouvrat. Influence des nuages sur l’atténuation du son, des infrasons et du bang sonique. 10ème Congrès Français d’Acoustique, Apr 2010, Lyon, France. lire en ligne.
  9. Voir à ce sujet « Environnement Canada ».
  10. Claude-Henri Chouard, L'oreille musicienne : Les chemins de la musique de l'oreille au cerveau, Paris, Gallimard, , 348 p. (ISBN 2-07-076212-2), p. 87.
  11. « Les baleines peuvent-elles prévoir les tsunamis ».
  12. Rossi 2007, p. 127 ; Marie-Claire Botte, Georges Canevet, Laurent Demany et Christel Sorin, Psychoacoustique et perception auditive, Tec & Doc, (ISBN 978-2852065345).
  13. Laurent Demany, « Perception de la hauteur tonale », dans Botte & alii, Psychoacoustique et perception auditive, Paris, Tec & Doc,  ; (en) Hugo Fastl et Eberhard Zwicker, Psychoacoustics: Facts and Models, Springer, (ISBN 978-3-540-23159-2)
  14. Michèle Castellengo, « Les sources acoustiques », dans Denis Mercier (direction), Le livre des techniques du son, tome 1 - Notions fondamentales, Paris, Eyrolles, , p. 58
  15. (en) Dennis Gabor, « Theory of communication : Part 1: The analysis of information », Journal of the Institute of Electrical Engineering, Londres, vol. 93-3, no 26,‎ , p. 429-457 (lire en ligne, consulté le 9 septembre 2013)

Annexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]