Nombre de Strouhal

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

Le nombre de Strouhal est un nombre sans dimension décrivant les mécanismes de circulation oscillante[1],[2].

Ce nombre porte le nom de Vincent Strouhal, physicien tchèque. Physiquement, il représente le rapport du temps d'advection et du temps caractéristique de l'instationnarité. Si , l'écoulement est dit quasi stationnaire[3].

Description[modifier | modifier le code]

En 1878, en étudiant les notes émises par un fil tendu soumis au vent, le physicien tchèque Vincent Strouhal fut le premier à remarquer la relation entre la fréquence du son et le quotient de la vitesse du vent par le diamètre du fil.

Cette relation s'exprime par la formule :

avec :

  • f - fréquence d'émission des tourbillons (cette fréquence étant définie classiquement comme l'inverse de la période mesurée de situation homologue à situation homologue) ;
  • D - longueur caractéristique (diamètre du fil dans les expériences de Strouhal) ;
  • V - vitesse de l'écoulement non perturbé.
Allée de tourbillons dans la soufflerie Marey de l'Association AÉRODYNE de l'IUT Cachan

L'écoulement de tels tourbillons forme ce que l'on appelle les Allées de tourbillons de Bénard-Karman, comme ci-contre dans la soufflerie à fumées Marey de l'Association AÉRODYNE de l'IUT Cachan. La longueur d'onde L mesurée ici donne accès directement au Strouhal St de l'écoulement, selon la loi St = D/L (D étant le diamètre du cylindre)[N 1].

Remarques diverses[modifier | modifier le code]

Si l'obstacle est rigide, la forme de ce sillage varie en fonction de la seule viscosité. Dans le cas où il prend la forme de tourbillons alternés, l'analyse dimensionnelle montre que le nombre de Strouhal est fonction du nombre de Reynolds.

Pour un cylindre à section circulaire ce nombre reste cependant à peu près constant et proche de 0,2 dans la plage de Reynolds allant de 300 à 10000. En d'autres termes la fréquence de détachement des tourbillons est à peu près proportionnelle à la vitesse de l'écoulement.

D'une façon générale, néanmoins, le Nombre de Strouhal des cylindres infinis de diverses sections est fonction du Nombre de Reynolds (basé ci-dessous sur la hauteur D de ces cylindres) :

Strouhal de cylindres infinis de différentes sections en fonction du Reynolds, d'après Blevins (cliquer pour lire les notes)

Le phénomène se complique lorsque la fréquence de Strouhal s'approche d'une fréquence propre du système, la mise en résonance de ce système créant des troubles pouvant aller jusqu'à sa destruction.

Notes et références[modifier | modifier le code]

Références[modifier | modifier le code]

  1. (en) Bernard Stanford Massey, Measures in science and engineering: their expression, relation and interpretation, Chichester, Ellis Horwood Limited, , 216 p. (ISBN 978-0-85312-607-2, LCCN 86000267)
  2. (en) Carl W. Hall, Laws and Models: Science, Engineering and Technology, Boca Raton, CRC Press, , 524 p. (ISBN 978-84-493-2018-7)
  3. Ion Paraschivoiu, Aérodynamique subsonique, Presses intl Polytechnique, (ISBN 978-2-553-00684-5)

Notes[modifier | modifier le code]

  1. On mesure ainsi sur cette animation un quotient D/L = St de 0,188, ce qui est un Strouhal réaliste pour le Reynolds de l’écoulement un peu supérieur à 140 (voir la courbe rouge du graphe ci-dessus)

Voir aussi[modifier | modifier le code]

Liens externes[modifier | modifier le code]