Volume

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir V.

Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.

  • En physique, le volume d'un objet mesure « l'extension dans l'espace physique » qu'il possède dans les trois directions en même temps, de même que l'aire d'une figure dans le plan mesure « l'extension » qu'elle possède dans les deux directions en même temps.

Mesure du volume[modifier | modifier le code]

V = |\det( \vec v_1, \vec v_2, \vec v_3)|

Les calculs de volume ont évolué au cours de l'histoire en suivant les progrès du calcul infinitésimal. C'est ainsi que les premiers volumes ont été calculés grâce à la méthode d'exhaustion, puis en utilisant le principe de Cavalieri et pour finir en calculant des intégrales triples.

Pour les solides simples (parallélépipède et objets de révolution), il existe des formules mathématiques permettant de déterminer leur volume d'après leurs dimensions caractéristiques.

Unités de volume[modifier | modifier le code]

L'unité de volume du système international est le mètre cube (m³) et ses dérivés (dm³, cm³, mm³). Mais d'autres unités de volume persistent surtout dans les pays anglo-saxons (voir Conversion des unités).

Les volumes de matière liquide ont souvent leurs unités propres (litre, pinte, baril). La mise en place du système métrique a grandement simplifié le nombre d'unités de volume utilisées qui dans l'Ancien Régime en comptait plus de vingt (voir Unités de mesure de l'Ancien Régime).

Pour les gaz où l'on veut connaître la quantité de matière (nombre de molécules) contenue dans un volume donné quelles que soient la pression et la température, deux définitions de correction existent :

  • le mètre cube dit normal exprimé en m3(n) correspondant à un volume de gaz ramené sous une pression de 1 013,25 hPa (pression d'une atmosphère normale ou 1 atm) et une température de 0 °C.
  • le mètre cube dit standard exprimé en m3(s) correspondant à un volume de gaz ramené sous une pression de 1 013,25 hPa (pression d'une atmosphère normale ou 1 atm) et une température de 25 °C.

Les volumes décrit ci-dessus correspondent à des volumes dit corrigés. Le volume qui ne tient pas compte de ces corrections est dit brut. On rencontre ces volumes dans l'élaboration des débits (voir débit) et du pouvoir calorifique des gaz.

Dans l'Union européenne, de nombreux volumes (et masses), sur les produits de consommation, sont indiqués en quantité estimée. Ils sont marqués comme tel, d'un « e » minuscule.

En mathématiques, l'unité de volume n'apparaît pas dans les formules. Elle est implicitement donnée par le volume du cube unité. Si, par exemple, pour des questions d'échelle, le cube unité a pour arête 2 cm, un volume de X (cube unité) correspond à 8X cm³.

Article détaillé : Unité de volume.

Quelques formules[modifier | modifier le code]

Dans la suite on notera

  • V le volume
  • B et b les aires de la grande base et de la petite base
  • H la hauteur (ou distance séparant les deux faces)
  • D ou d le diamètre
  • R ou r le rayon
  • a l'arête
  • L ou l la longueur et la largeur d'un rectangle

Les solides de Platon[modifier | modifier le code]

Ce sont les cinq seuls polyèdres réguliers. Si l'arête du polyèdre est a, son volume est donné par les formules du tableau suivant:

polyèdre volume
Pour le tétraèdre : V = \frac{1}{12}\sqrt{2}a^3
Animation d'un tétraèdre
Pour le cube : V = a^3\,
Animation d'un cube
Pour l'octaèdre : V = \frac{1}{3}\sqrt{2}a^3
Animation d'un octaèdre
Pour le dodécaèdre régulier : V = \frac 14(15 + 7\sqrt 5)a^3
Animation d'un dodécaèdre
Pour l'icosaèdre : V = \frac 56\varphi^2a^3\varphi est le nombre d'or
Animation d'un icosaèdre

Les prismes et cylindres[modifier | modifier le code]

La formule générale est toujours : V =B \times H (volume = aire de la base × hauteur), que le prisme ou le cylindre soit droit ou pas.

En particulier,

Les pyramides et cônes[modifier | modifier le code]

La formule générale est toujours : V = \frac 13 B \times H

La boule[modifier | modifier le code]

  • La boule a pour volume V = {4 \over 3} \pi R^3 ou V = \pi {D^3 \over 6}
  • Pour une calotte sphérique, V = \frac{\pi}{3}H^2(3R-H) ou V = \frac{\pi}{2}H(\frac{H^2}{3}+r^2)R est le rayon de la boule, r est le rayon de la calotte et H la hauteur de la calotte.
  • Le volume de la boule percée d'un cylindre (rond de serviette) ne dépend pas du rayon de la boule mais seulement de la hauteur H du cylindre: V = \frac{\pi}{6} H^3
  • Le secteur sphérique (intersection entre un cône de sommet O et la boule de centre O : V = \frac 23 \pi R^2HH est la hauteur de la calotte et R le rayon de la boule.

Solides de révolution[modifier | modifier le code]

Article détaillé : théorème de Guldin.

Le théorème de Guldin (ou règle de Pappus) permet de calculer le volume d'un solide de révolution engendré par la révolution d'un élément de surface S plane autour d'un axe situé dans son plan et ne le coupant pas, pour peu que l'on connaisse le centre de gravité G de l'élément de surface S.

V = 2\pi R\cdot SR est la distance séparant le point G de l'axe de rotation.

Cette formule permet de déterminer les volumes suivants :

  • le tore : V = 2\pi^2 Rr^2r est le rayon du cercle de centre G tournant autour de l'axe (\Delta) et où R est la distance de G à (\Delta).
  • le tonneau : Kepler donne une formule approchée pour le volume d'un tonneau, qui se révèle exacte lorsque le tonneau est engendré par une sphère, une pyramide, un hyperboloïde à une nappe, un paraboloïde elliptique, un ellipsoïde de révolution. Si B_1 et B_2 sont les surfaces des bases et B_3 la surface de la section à mi-hauteur alors
V = \frac h6 (B_1 + B_2 + 4B_3)

Autres[modifier | modifier le code]

  • Le conoïde circulaire droit (exemple l'incisive) : V = \frac 12 \pi R^2HR est le rayon du cercle de base et H la hauteur du conoïde.
  • Le lingot (hexaèdre formé de deux bases rectangulaires parallèles et de 4 faces latérales trapézoïdales) . On retrouve la formule de Kepler : V = \frac h6(B_1+B_2+4B_3)B_1 et B_2 sont les surfaces des deux bases rectangulaires et B_3 la surface de la section à mi-hauteur. Cette formule est très employée en génie civil dans les calculs de volume de terrassement et plus particulièrement pour les mouvements de terres dans le domaine des travaux publics.

Volume et calcul intégral[modifier | modifier le code]

Article détaillé : intégrale multiple.

Si \mathcal D est une partie bornée de \R^2, le volume du cylindre ayant pour génératrice la frontière de \mathcal D, délimité par le plan z=0 et la surface d'équation z=f(x,y) – avec f positive et continue sur \mathcal D – est :

V = \iint_\mathcal D f(x,y)\,\mathrm{d}x\,\mathrm{d}y

Dans le cas où le domaine \mathcal D est défini par des conditions simples x_1<x<x_2, y_1(x)<y(x)<y_2(x), ce calcul se ramène à :

V = \int_{x_1}^{x_2}\!\int_{y_1(x)}^{y_2(x)} f(x,y)\,\mathrm{d}y\,\mathrm{d}x

Si \mathcal A est une partie bornée de \R^3 et si la fonction constante 1 est intégrable sur \mathcal A, le volume de \mathcal A est alors

V = \iiint _\mathcal A \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z

Dans le cas où le domaine \mathcal A est défini par des conditions simples x_1(z,y) <x(z,y)<x_2(z,y), y_1(z)<y(z)<y_2(z) et z_1<z<z_2, ce calcul se ramène à :

V = \int_{z_1}^{z_2}\!\int_{y_1(z)}^{y_2(z)}\!\int_{x_1(z,y)}^{x_2(z,y)}\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z

Par linéarité de l'intégration, un domaine difficile à définir peut être partitionné en plusieurs sous-domaines exprimables eux en conditions simples.

Si le domaine \mathcal A s'exprime mieux en coordonnées cylindriques par des conditions simples \mathcal A', le calcul peut s'exprimer par

V = \iiint _{\mathcal A'} r\,\mathrm{d}r\,\mathrm{d}\theta\,dz\mathcal A' est une partie bornée de \R_+\times [0,2\pi] \times \R

Si le domaine \mathcal As'exprime mieux en coordonnées sphériques par des conditions simples \mathcal A'', le calcul peut s'exprimer par

V = \iiint _{\mathcal A''} r^2\sin(\phi)\,\mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\phi\mathcal A'' est une partie bornée de \R_+\times [0,2\pi]\times [0,\pi].

Dans le cas où le domaine \mathcal A est un solide de révolution dont la frontière est engendrée par la rotation d'une courbe d'équation y = f(x) autour de l'axe (Ox), le calcul du volume se réduit à une intégrale simple

V = \pi \int_{x_1}^{x_2}f^2(x)\,\mathrm{d}x

Enfin, le théorème de flux-divergence permet de réduire le calcul de volume à une intégrale de surface

V = \iiint _A \mathrm{d}V = \frac 13 \iint_{\part\mathcal A} (x,y,z)\vec n\,\mathrm{d}S

\part\mathcal A est la frontière de \mathcal A, et \vec n le vecteur unitaire normal à \mathrm dS dirigé vers l'extérieur de \mathcal A.

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]