Pyramide

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur les redirections Cet article concerne les pyramides en tant que polyèdres géométriques. Pour les autres significations, voir Pyramide (homonymie).
Ensemble des pyramides
Pyramide carrée
Faces n triangles,
1 n-gone
Arêtes 2n
Sommets n+1
Groupe de symétrie Cnv
Polyèdre dual Auto-duaux
Propriétés convexe

Une pyramide (du grec pyramis) à n côtés est un polyèdre formé en reliant une base polygonale de n côtés à un point, appelé l'apex, par n faces triangulaires (n ≥ 3). En d'autres mots, c'est un solide conique avec une base polygonale.

Lorsque cela n'est pas précisé, la base est supposée carrée. Pour une pyramide triangulaire chaque face peut servir de base, avec le sommet opposé pour apex. Le tétraèdre régulier, un des solides de Platon, est une pyramide triangulaire. Les pyramides carrées et pentagonales peuvent aussi être construites avec toutes les faces régulières, et par conséquent être des solides de Johnson. Toutes les pyramides sont des auto-duaux.

Les pyramides sont une sous-classe des prismatoïdes.

Origine du nom[modifier | modifier le code]

Le mot pyramide vient du grec π υ ρ α μ ι ́ ς, -ι ́ δ ο ς transmis au latin sous la forme pyramis, -idis[1] mais son origine est incertaine. Certains la rattachent à la notion de feu (racine grecque pyr)[2] et citent Platon qui voyait dans le tétraèdre régulier (en forme de pyramide) le symbole du feu[3]. D'autre y voit un mot dérivé du grec « puros » signifiant « froment» rappelant que c'était la forme des greniers royaux[2]. D'autres y voient une déformation de l'égyptien, soit du mot « haram (ou rem) » qui s'écrit h-r-m en égyptien[2] et qui est leur nom en égyptien, soit du mot « pr-m-ous » qui désigne en égyptien une ligne déterminante de la pyramide[4]. D'autres enfin signalent que ce mot « pyramis » désignait en grec un gâteau de miel et de farine[4].

Volume[modifier | modifier le code]

Le volume d'un cône et en particulier d'une pyramide est

V=\frac13Ah

A est l'aire de la base et h la hauteur de la base à l'apex, c'est-à-dire la distance perpendiculaire à partir du plan qui contient la base.

Pyramide géométrique vue en perspective

En particulier, le volume d'une pyramide à base carrée avec un apex de hauteur égale à la moitié de la base peut être vue comme un sixième d'un cube formé par six pyramides de cette sorte (en paires opposées) par le centre. Alors « base fois hauteur » correspond à un demi du volume du cube, et par conséquent trois fois le volume de la pyramide, ce qui donne bien le facteur un tiers.

Le volume d'une pyramide à base carrée et composée de triangles équilatéraux est le double de celui d'un tétraèdre de même côté, ce qui se démontre par dissection moitié.

Aire de la surface[modifier | modifier le code]

L'aire de la surface d'une pyramide régulière, c'est-à-dire une pyramide dont toutes les faces sont des triangles isocèles identiques, est

A =A_b+ \frac{ps}2

Ab est l'aire de la base, p le périmètre de la base et s la hauteur de la pente le long de la bissectrice d'une face (ie la longueur à partir du milieu d'une arête quelconque de la base jusqu'à l'apex).

Pyramides avec des faces polygonales[modifier | modifier le code]

Si toutes les faces sont des polygones réguliers, la base de la pyramide peut être un polygone régulier de 3, 4 ou 5 côtés :

Nom Tétraèdre Pyramide carrée Pyramide pentagonale
Tetrahedron.svg Square pyramid.png Pentagonal pyramid.png
Classe Solide de Platon Solide de Johnson (J1) Solide de Johnson (J2)
Base Triangle équilatéral Carré Pentagone régulier
Groupe
de symétrie
Td C4v C5v

Le centre géométrique d'une pyramide carrée est localisé sur l'axe de symétrie, à un quart de la base vers l'apex.

Symétrie[modifier | modifier le code]

Si la base est régulière et l'apex est au-dessus du centre, le groupe de symétrie d'une pyramide à n côtés est Cnv d'ordre 2n, excepté dans le cas d'un tétraèdre régulier, qui possède le groupe de symétrie plus grand Td d'ordre 24, qui a quatre versions de C3v pour sous-groupes.

Le groupe de rotation est Cn d'ordre n, excepté dans le cas d'un tétraèdre régulier, qui possède le groupe de rotation plus grand T d'ordre 12, qui a quatre versions de C3 pour sous-groupes.

Généralisation aux dimensions supérieures[modifier | modifier le code]

Une pyramide est un objet géométrique ayant pour base un polygone quelconque, auquel on relie tous ses sommets à un point unique. Par abus de langage, on dit qu'elle est régulière si toutes ses faces sont des polygones réguliers.

En généralisant, une hyperpyramide de dimension 4 est un polychore ayant pour base un polyèdre auquel on relie tous ses sommets à un point unique. Le pentachore en est l'exemple le plus simple.

Et donc, une hyperpyramide de dimension n est un polytope à n dimensions, qui a pour base un polytope à n-1 dimensions, et dont tous les sommets sont reliés à un point unique. Une hyperpyramide peut être considérée comme l'ensemble de tous les "états" pris par sa base lors de son rétrécissement progressif jusqu'à l'apex le long d'une médiane centrale (reliant le centre de gravité de la base au sommet); tous ces "états" de la base sont en fait l'intersection de l'hyperpyramide avec des hyperplans parallèles à la base.

L'hypervolume d'une hyperpyramide de dimension n est donné par la formule

V_n = \frac{B_{n-1} \times h}n,

Bn–1 est l'hypervolume de la base et h la hauteur.

Les premières hyperpyramides
Nom Point Segment Triangle Pyramide 4-hyperpyramide 5-hyperpyramide
Explication rien (d=-1) n'est relié à un point (d=0) un point (d=0) est relié à un point (d=0) un segment (d=1) est relié à un point (d=0) un polygone (d=2) est relié à un point (d=0) un polyèdre (d=3) est relié à un point (d=0) un polychore (d=4) est relié à un point (d=0)
Dimension 0 1 2 3 4 5
Image Point graphe.jpg Segment graphe.jpg Triangle illustration.svg Square pyramid.png Hyperpyramide-animation.gif


Tout simplexe est une hyperpyramide, et la plus simple de chaque dimension.

Symbolique[modifier | modifier le code]

Tombe pyramidale de Philippe-Louis Mangay à Freyming-Merlebach

Pour la franc-maçonnerie, la pyramide représente la Lumière, l'éveil des Hommes qui se rapprochent de la vérité, des dieux. Chez les Égyptiens, la pyramide est le lieu où l'Homme passe de la vie à la mort. Les francs-maçons ont donc repris ce symbole pour désigner le passage de l'ignorance à la connaissance, de la vie profane à la vie d'initié.

À Freyming-Merlebach, Philippe-Louis Mangay (1782-1842) riche avocat à la cour royale de Metz se fait inhumer dans une tombe de forme pyramidale, square Saint-Maurice à Freyming-Merlebach[5]. Cette tombe est située près du chœur (XVIIIe) de l'ancienne église paroissiale de Feyming.

La forme pyramidale serait magique, et augmenterait certaines qualités en elle, à un endroit précis.

Article détaillé : champs de forme.

Notes et références[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Pyramid (geometry) » (voir la liste des auteurs)

  1. Définitions lexicographiques et étymologiques de « pyramide » du TLFi, sur le site du CNRTL..
  2. a, b et c Aubin-Louis Millin, Dictionnaire des beaux-arts, 1805, p. 403.
  3. Platon, Le Timée, 56b.
  4. a et b Jean-Philippe Lauer, « Pyramide », in Encyclopædia Universalis, 1990, T.19, p. 311.
  5. Metz 2013, Le Petit Futé, ouvrage collectif, page 308.

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Article connexe[modifier | modifier le code]

Bipyramide

Liens externes[modifier | modifier le code]