Cube

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Cube (homonymie).
Cube
Représentation d'un cube
Représentation d'un cube

Type Solide platonicien
Faces 6 carrés
Arêtes 12
Sommets 8
Faces/sommet 3
Caractéristique 2

Symbole de Schläfli {4,3}
Symbole de Wythoff 3
Diagramme de Coxeter-Dynkin CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Dual Octaèdre régulier
Groupe de symétrie Oh (en)
Volume
Aire 6a²
Angle dièdre 90°
Propriétés zonoèdre convexe

En géométrie euclidienne, un cube est un prisme dont toutes les faces sont carrées donc égales et superposables. Le cube figure parmi les solides les plus remarquables de l'espace. C'est le seul des cinq solides de Platon, ayant exactement 6 faces, 12 arêtes et 8 sommets. Son autre nom est « hexaèdre régulier ».

L'étymologie du terme cube est grecque ; cube provient de kubos, le .

Le terme de cube, appliqué à un nombre, désigne la valeur obtenue en multipliant ce nombre par lui-même et en remultipliant le résultat par le nombre initial. Cette expression s'est imposée durant la période où l'algèbre géométrique était omniprésente, le carré d'un nombre était vu comme la surface d'un carré de côté le nombre initial et le cube d'un nombre comme le volume d'un cube de côté le nombre initial. L'expression « a3 » peut se lire « a au cube » et « a cube ».

Le squelette du cube, l'ensemble de ses sommets reliés par ses arêtes, forme un graphe appelé graphe hexaédrique.

Géométrie[modifier | modifier le code]

Article détaillé : Géométrie.
Cube

Le cube est un des cinq solides de Platon. Un cube appartient à la famille des prismes droits. Il possède 8 sommets et 12 arêtes. De plus :

  • Deux arêtes ayant une extrémité commune sont orthogonales.
  • Les faces opposées sont parallèles. Les faces adjacentes sont perpendiculaires
  • Tous les angles dièdres sont droits.
  • Les diagonales s'intersectent en un unique point, le centre de symétrie du cube, l'isobarycentre des huit sommets.

Mais par définition ses arêtes sont toutes de longueur égale, disons a. Ses faces sont donc des carrés, de même superficie, égale à a². De fait :

  • son aire vaut donc 6 × a² ;
  • son volume vaut a³ ;
  • la longueur d'une diagonale vaut a\sqrt{3} ;
  • la sphère circonscrite a donc pour rayon \frac a2 \sqrt{3} ;
  • la sphère tangente aux arêtes a pour rayon \frac a2\sqrt{2} ;
  • la sphère inscrite a pour rayon \frac a2 ;
  • l'angle entre la diagonale et chacun des plans adjacents vaut \arctan\left(\frac{1}{\sqrt{2}}\right) \simeq 35.26^\circ.

C'est l'expression de son volume qui a conduit à l'utilisation du mot cube en algèbre.

Autres définitions[modifier | modifier le code]

Il existe d'autres définitions équivalentes du cube :

  • les cubes sont les seuls polyèdres dont toutes les faces sont carrées ;
  • le cube est un antidiamant d'ordre 3 à sommets réguliers et angles dièdres égaux.

Groupe des isométries[modifier | modifier le code]

Le cube est l'un des polyèdres offrant le plus de symétries :

  • 3 axes de rotation d'ordre 4 : axes passant par le centre de deux faces opposées ;
  • 6 axes de rotations d'ordre 2 : axes passant par le milieu de deux arêtes opposées ;
  • 4 axes de rotation d'ordre 3 : axes passant par deux sommets opposés ;
  • la symétrie de centre O ;
  • 9 plans de symétrie : 3 plans médiateurs des arêtes, 6 plans passant par deux arêtes opposées.

Une isométrie du cube est entièrement définie par l'image d'un sommet et des trois arêtes issues de ce sommet (repère de l'espace). Ce sommet peut avoir pour image l'un quelconque des 8 sommets du cube. La première arête a alors 3 images possibles, la seconde arête deux images seulement et l'image de la dernière arête est alors déterminée. Ceci prouve que les isométries laissant le cube globalement invariant sont au nombre de 8 × 3 × 2 = 48. Ces isométries se partagent en 24 isométries positives et 24 isométries négatives. Les isométries positives possèdent toutes le point O comme invariant : on dénombre alors (en comptant l'identité) 24 rotations du cube.

On retrouve alors les axes de rotations précédents :

  • 3 axes de rotation générant 3 rotations d'angle non nul, soit 9 rotations ;
  • 6 axes de rotation générant 1 rotation d'angle plat, soit 6 rotations ;
  • 4 axes de rotation générant 2 rotations d'angle non nul, soit 8 rotations.

ainsi que les 9 symétries par rapport à un plan générées par les 9 rotations d'angle plat composées avec la symétrie de centre O.

Ce qui prouve que l'inventaire était bien exhaustif.

Ce groupe est le plus vaste de ceux des polyèdres réguliers qui peuvent paver l'espace. L'analyse associée se trouve dans l'article réseau (géométrie).

Patrons[modifier | modifier le code]

Il existe de nombreux patrons du cube, onze différents pour être précis, en voici des exemples :

Le cube et les autres polyèdres[modifier | modifier le code]

Le dual du cube est l'octaèdre régulier. Ce qui explique que les deux solides possèdent le même groupe d'isométries.

Le cube s'inscrit dans un dodécaèdre régulier : les sommets du cube sont des sommets du dodécaèdre et les arêtes du cube sont formées de segments joignant deux sommets non consécutifs dans une face pentagonale du dodécaèdre. Il y a ainsi cinq façons d'inscrire un cube dans un dodécaèdre régulier.

On peut aussi inscrire le cube dans un dodécaèdre rhombique. Les sommets du cube correspondent aux sommets d'ordre 3 du dodécaèdre rhombique et les arêtes du cube correspondent aux diagonales des losanges.

Fascination du cube[modifier | modifier le code]

Le cube a joué un rôle important dans la géométrie et la cosmologie grecque. Platon, dans le Timée, le classe comme le quatrième solide, le premier construit à l'aide de triangles isocèles rectangles :

«  Groupés par quatre avec leurs angles droits se rencontrant au centre, ces triangles isocèles forment un quadrangle. Six de ces quadrangles en s'accollant ont donné naissance à huit angles solides, composés chacun de trois angles plans droits et la figure obtenue est un cube (Timée, 54c - 55 d) »

Comme chaque solide de Platon, le cube est associé à un élément. Comme élément le plus stable, il est associé à la terre.

Le cube a été l'objet d'un problème qui s'est révélé insoluble : la duplication du cube à la règle et au compas.

Dans la cosmologie de Kepler, le cube est associé à la planète Saturne.

On retrouve aussi le cube dans la symbolique franc-maçonne. Le cube y symbolise les progrès que doit faire le compagnon pour passer de la pierre brute au solide parfait.

Le cube a fait l'objet d'une séquence de trois films canadiens. Apple a produit l'ordinateur Cube, Nintendo la console GameCube. Le rubik's cube est un casse-tête dont la réflexion se base sur des associations de couleur. Comprendre sa solution fait appel au groupe des permutations.

On retrouve un cube tronqué dans le tableau Melencolia d'Albrecht Dürer. L'atomium de Bruxelles est un cube. En effet, le cube est un des réseaux possibles en cristallographie pour l'argent, l'or, le cuivre, le platine, le diamant, le sel, entre autres.

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Lien externe[modifier | modifier le code]