Problème de Monty Hall

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Le problème de Monty Hall est un casse-tête probabiliste librement inspiré du jeu télévisé américain Let's Make a Deal. Il est simple dans son énoncé mais non intuitif dans sa résolution et c'est pourquoi on parle parfois à son sujet de paradoxe de Monty Hall. Il porte le nom de celui qui a présenté ce jeu aux États-Unis pendant treize ans, Monty Hall.

Les données de base du problème de Monty Hall : Soient trois portes cachant soit une chèvre soit une superbe voiture, l'automobile étant derrière une seule porte et deux chèvres se cachant derrière les deux autres portes.

Énoncé[modifier | modifier le code]

Le jeu oppose un présentateur à un candidat (le joueur). Ce joueur est placé devant trois portes fermées. Derrière l'une d'elles se trouve une voiture (ou tout autre prix magnifique) et derrière chacune des deux autres se trouve une chèvre (ou tout autre prix sans importance). Il doit tout d'abord désigner une porte. Puis le présentateur ouvre une porte qui n'est ni celle choisie par le candidat, ni celle cachant la voiture (le présentateur sait quelle est la bonne porte dès le début). Le candidat a alors le droit ou bien d'ouvrir la porte qu'il a choisie initialement, ou bien d'ouvrir la troisième porte.

Les questions qui se posent au candidat sont :

  1. Que doit-il faire ?
  2. Quelles sont ses chances de gagner la voiture en agissant au mieux ?

Historique et évolution de l'énoncé du problème[modifier | modifier le code]

Ci-dessous est reproduite la traduction d'un énoncé célèbre du problème, issu d'une lettre que Craig F. Whitaker avait fait paraître dans la rubrique Ask Marylin de Marilyn vos Savant du Parade Magazine en septembre 1990[1] :

« Supposez que vous êtes sur le plateau d'un jeu télévisé, face à trois portes et que vous devez choisir d'en ouvrir une seule, en sachant que derrière l'une d'elles se trouve une voiture et derrière les deux autres des chèvres. Vous choisissez une porte, disons la numéro 1, et le présentateur, qui lui sait ce qu'il y a derrière chaque porte, ouvre une autre porte, disons la numéro 3, porte qui une fois ouverte découvre une chèvre. Il vous demande alors : « désirez-vous ouvrir la porte numéro 2 ? ». À votre avis, est-ce à votre avantage de changer de choix et d'ouvrir la porte 2 plutôt que la porte 1 initialement choisie ? »

La publication de cet article dans le Parade Magazine a eu un impact immédiat sur le lectorat et a engendré de très nombreuses discussions parmi les mathématiciens, célèbres ou non, et les amateurs anonymes. Marilyn vos Savant, réputée pour figurer au Guinness Book of Records comme étant la personne au quotient intellectuel le plus élevé au monde (QI de 228), a ainsi reçu plus de 10 000 lettres (estimation faite par elle-même) traitant du problème, dont plusieurs provenant d'universitaires remettant en question la pertinence de la démonstration reproduite dans sa rubrique. En 1991, pour une édition dominicale, la une du New York Times ouvre sur ce sujet. Jerry Pournelle, célèbre chroniqueur du Chaos Manor de Byte, a également discuté le problème longuement en tant qu'adversaire de la solution de Marilyn, pour se ranger en fin de compte à ses arguments. Enfin, une discussion controversée a eu lieu à propos de l'article du Parade Magazine dans la rubrique The Straight Dope tenue par Cecil Adams dans l'hebdomadaire The Chicago Reader.

La pertinence des résultats statistiques était parfois contestée, mais ce qui posait le plus souvent problème était que l'article n'insistait pas sur les « contraintes » du présentateur. Les résultats donnés impliquaient nécessairement les postulats suivants :

  • Que le présentateur ne peut ouvrir la porte choisie par le candidat.
  • Que le présentateur donne systématiquement la possibilité au candidat de revenir sur son choix initial.

Or, comme ces éléments n'étaient pas mis en avant dans l'énoncé du problème, et ce même s'ils étaient implicites, d'autres résultats statistiques que ceux donnés dans l'article devenaient possibles. Rien n'indiquant que l'énoncé de départ doive nécessairement inclure ces postulats, on devrait pouvoir généraliser le problème à d'autres cas.

Finalement, en considérant que ces postulats étaient une condition sine qua non de l'énoncé du problème, il s'est avéré que les résultats de l'article étaient effectivement justifiés.

Cependant il manquait au moins un élément de taille : la question de savoir si le candidat devait ou non changer sa décision initiale pour avoir plus de chances de gagner la voiture n'avait de sens que si l'énoncé précisait bien que le présentateur savait précisément ce qui se cachait derrière chaque porte, élément justement omis dans l'article du Parade Magazine. Si le présentateur ne le savait pas, alors la question aurait été dénuée de sens (comme on le verra en particulier dans les variantes).

Cela dit, cet énoncé ne fait que s'inscrire dans la lignée de ceux consacrés à ce type de paradoxe.

En effet, une des premières apparitions de ce problème date de 1898 dans Probabilités de Calcul de Joseph Bertrand où il est décrit comme le paradoxe de la boîte de Bertrand (à ne pas confondre avec le paradoxe de Bertrand).

Un énoncé actuel exempt d'ambiguïté[modifier | modifier le code]

Il est donc préférable de se baser sur un énoncé non équivoque du problème, incluant donc expressément les contraintes du présentateur, décrit par Mueser et Granberg comme suit :

  • Derrière chacune des trois portes se trouve soit une chèvre, soit une voiture, mais une seule porte donne sur une voiture alors que deux portes donnent sur une chèvre. La porte cachant la voiture a été choisie par tirage au sort.
  • Le joueur choisit une des portes, sans que toutefois ce qui se cache derrière (chèvre ou voiture) soit révélé à ce stade.
  • Le présentateur sait ce qu'il y a derrière chaque porte.
  • Le présentateur doit ouvrir l'une des deux portes restantes et doit proposer au candidat la possibilité de changer de choix quant à la porte à ouvrir définitivement.
  • Le présentateur ouvrira toujours une porte derrière laquelle se cache une chèvre, en effet :
    • Si le joueur choisit une porte derrière laquelle se trouve une chèvre, le présentateur ouvrira l'autre porte où il sait que se trouve également une chèvre.
    • Et si le joueur choisit la porte cachant la voiture, le présentateur choisit au hasard parmi les deux portes cachant une chèvre. (on peut supposer qu'un tirage au sort avant l'émission a décidé si ce serait la plus à droite ou à gauche)
  • Le présentateur doit offrir la possibilité au candidat de rester sur son choix initial ou bien de revenir dessus et d'ouvrir la porte qui n'a été choisie ni par lui-même, ni par le candidat.

La question qui se pose alors est :

  • Le joueur augmente-t-il ses chances de gagner la voiture en changeant son choix initial ?

Ou formulé autrement, cela revient à dire :

  • Est-ce que la probabilité de gagner en changeant de porte est plus grande que la probabilité de gagner sans changer de porte ?

Ou encore :

  • Quelle est la meilleure stratégie : Faire un nouveau choix ou rester avec le choix initial ? Les chances de gain vont-elles augmenter, diminuer ou bien resteront-elles les mêmes ?

La solution[modifier | modifier le code]

Controverse[modifier | modifier le code]

Si l'on demande une réponse rapide et intuitive, deux points de vue incompatibles s'opposent.

  • Le premier affirme qu'après ouverture de la porte, il reste deux portes, chacune ayant tout autant de chances de cacher la voiture. On a donc tout autant de chances de gagner avec changement que sans changement.
  • Le second affirme que si l'on ne change pas de porte, on gagne si et seulement si on avait fait le bon choix au départ. Or ce choix avait une chance sur trois d'être bon. Il y a donc 1/3 de chances de gagner sans changer, 2/3 de chances de gagner en changeant.

Ce problème a longtemps été un cas de paradoxe probabiliste (à l'instar du problème de la Belle au bois dormant) pour lequel il existe deux solutions contradictoires défendables sans qu'on parvienne à faire triompher une interprétation. La solution 2/3-1/3 s'impose, en particulier après la réalisation de simulations d'un grand nombre de tirages. À noter que le premier point de vue est une illusion de parité due au fait qu'un choix est demandé sur les deux portes fermées restantes alors que ces deux portes ont bénéficié d'une amélioration des chances de tomber sur l'objet désiré par ouverture d'une porte chèvre ! Le problème n'est donc pas si difficile si on est averti des illusions cognitives (il y en a d'autres) qui s'y cachent.

Les hypothèses importantes[modifier | modifier le code]

  1. Les trois portes ont, tant qu'aucune n'est ouverte, la même probabilité d'être la porte gagnante ; cette hypothèse est équivalente aux deux qui suivent :
    (a) la porte qui est choisie en premier a une chance sur trois, au moment où elle est choisie, d'être la porte gagnante,
    (b) les deux portes non choisies ont au moment du choix une égale probabilité d'être la porte gagnante, pour un total de deux chances sur trois pour que le gros lot se trouve derrière l'une ou l'autre.

Un choix doit ensuite être fait entre les conditions suivantes :

  1. Le présentateur ne peut ouvrir qu'une porte, et celle-ci ne peut être ni la porte choisie par le joueur, ni la porte gagnante (il connaît l'emplacement de cette dernière, ce qui lui permet de répondre à cette condition sans risque d'erreur).
  2. Quand le présentateur a le choix entre deux portes à ouvrir (toutes deux perdantes), il choisit au hasard entre les deux, avec équiprobabilité; ce qui n'a pas d'importance, car les portes ne se distinguent alors pas fonctionnellement l'une de l'autre.

Ces hypothèses sont toutes importantes, et on verra que la modification de n'importe laquelle conduit à un résultat différent. Mais souvent, l'usage de plusieurs de ces hypothèses est implicite.

Réfutation des arguments pro-1/2[modifier | modifier le code]

Longtemps le raisonnement développé ci-dessus n'a pas fait l'unanimité. Il lui était reproché de considérer que l'ouverture d'une mauvaise porte laisse inchangée la probabilité pour que la porte initialement choisie soit la bonne (1/3). Il est effectivement légitime de se demander pourquoi l'ouverture de la troisième porte ne modifie la probabilité que d'une des deux portes. En particulier il est clair que si les deux portes étaient ouvertes, cette probabilité deviendrait une certitude, soit dans un sens, soit dans l'autre. Cela montre donc que la probabilité varie en fonction des connaissances : c'est la notion de probabilité conditionnelle, et en fait toute probabilité, explique Myron Tribus est conditionnelle à un état de connaissance.

Ceux qui refusent ce raisonnement (les personnes pro-1/2) considèrent que la situation après ouverture d'une porte est équivalente à ouvrir une mauvaise porte avant le choix du candidat. Ils affirment par conséquent que la probabilité de gagner est la même en changeant ou sans changer, soit 1/2.

L'erreur de ce type de raisonnement est de ne retenir que l'événement « une porte a été ouverte ». Si une porte était ouverte strictement au hasard parmi les deux portes non choisies, et qu'elle révélait une chèvre, la probabilité deviendrait d'1/2 pour chacune des deux autres portes (parce qu'on a ici pris le risque d'ouvrir la porte dévoilant la voiture). Savoir ce qu'a prévu la direction du jeu pour le cas où la voiture aurait été dévoilée est sans importance (des possibilités sont envisagées dans les variantes).

Ce type de raisonnement assimile un phénomène aléatoire (une chance sur trois que la voiture soit derrière l'une quelconque des portes) et la connaissance que l'on a de la réalité du phénomène (derrière quelle porte est réellement située la voiture). C'est la notion bayésienne selon laquelle une probabilité est la traduction numérique d'un état de connaissance (paradoxe des camions prospecteurs).

Lorsqu'au début du jeu le joueur choisit une porte au hasard, il n'a aucun indice sur la position de la voiture, la probabilité de trouver la bonne porte est alors une chance sur trois.

Ouvrir une porte voire deux ou les trois, après le choix, ne modifiera en rien a posteriori la probabilité que l'on avait de choisir la bonne porte au début du jeu (la connaissance du résultat du tirage du loto ne modifie en rien la probabilité que vous aviez de gagner à ce tirage) mais en revanche nous apportera peut-être un indice sur la position de la voiture.

Dans notre cas l'animateur a ouvert une des deux portes que le joueur n'a pas choisies et derrière cette porte apparaît une chèvre. Cela modifie-t-il la connaissance que l'on a de la probabilité que derrière la porte choisie par le joueur se cache la voiture ? Oui pour les bayésiens, car les conditions de connaissance viennent de changer. Non pour les fréquentistes, qui considèrent que la probabilité est associée à l'événement lui-même et non à l'observateur (ce qui n'est vrai que dans des cas comme le jet d'une pièce de monnaie, où l'observation n'apporte rien). Comme il y a deux chèvres, l'animateur peut toujours ouvrir une porte pour faire apparaître une chèvre quelle que soit l'image qui se cache derrière la porte initialement choisie par le joueur. La probabilité que la porte choisie par le joueur cache une voiture est donc toujours d'une chance sur trois[réf. nécessaire]. En revanche, nous savons à coup sûr que la voiture est derrière une des deux portes non ouvertes, si la probabilité que ce soit derrière la porte initialement choisie est de 1/3 alors la probabilité que ce soit derrière l'autre porte est de : 1 - 1/3 = 2/3. Il faut donc pour les fréquentistes que le joueur change de choix, mais non pour les bayésiens.

Maintenant l'on peut examiner directement, après ouverture de la porte par l'animateur, si la connaissance de la probabilité que la voiture soit derrière la porte non ouverte et non choisie par le joueur a progressé. La réponse est oui, car dans le cas où la voiture est derrière une des deux portes non choisies par le joueur (deux chances sur trois), l'animateur a éliminé la chèvre (le mauvais choix pour le joueur), il ne reste donc que la voiture. En changeant son choix le joueur a donc une probabilité de 2/3 x 1 = 2/3 de trouver la voiture. L'aide apportée par l'animateur est donc d'éliminer le mauvais choix (la chèvre) dans deux cas sur trois à condition bien sûr que le joueur change son choix initial.

Pour une démonstration formelle, voir le paragraphe « résolution par la formule de Bayes ».

Raccordement des différents calculs[modifier | modifier le code]

Pour faire le calcul avant ouverture de la porte, il faut raisonner ainsi: on doit envisager la possibilité que la porte choisie initialement soit la bonne, et celle que chacune des deux autres portes soit la bonne. Il faut alors penser à l'issue de chacune de ces possibilités, c'est-à-dire se demander quelle porte sera ouverte par le présentateur (4 sous-cas en tout) et ce qu'il faudra faire alors pour gagner. On voit rapidement que la probabilité de gagner en changeant est égale à 1-p, p étant la probabilité pour la porte initialement choisie d'être la bonne, ici 1/3 (Hypothèse 1a). Donc ici, on gagne 2 fois sur 3 en changeant. Il est important ici de se rappeler qu'il n'y a jamais de remise (Hypothèses 2), sans quoi le raisonnement précédent n'est plus valable.

La probabilité est-elle inchangée par l'ouverture (plus précisément : par le choix fait par le présentateur entre les deux portes dont on envisageait l'ouverture) ? Pas forcément, mais tels que les calculs ont été faits, les situations après ouverture sont des sous-cas du calcul précédent. Donc, sans affirmer immédiatement que la probabilité est inchangée, la moyenne pondérée des probabilités correspondant à chaque porte ouverte par le présentateur doit correspondre au calcul précédent. Prétendre qu'on a 1 chance sur 2 de gagner sans changer quelle que soit la porte ouverte est donc incohérent.

Pour évaluer les chances après ouverture, il suffit en fait de constater qu'il y a après choix totale symétrie entre les 2 portes non choisies (Hypothèses 1b et 3). Puisque la moyenne pondérée doit valoir 2/3 et que les sous-cas doivent donner le même résultat, on retrouve bien 2 chances sur 3 de gagner en changeant quelle que soit la porte ouverte. Il était donc important de préciser que quand deux portes peuvent être ouvertes, le choix est équiprobable.

Le résultat 2/3 est donc parfaitement valide, mais il convient de ne pas l'annoncer sans préciser qu'il repose sur la parfaite symétrie des rôles des portes non choisies. En brisant cette symétrie, tous les résultats sont possibles.

De plus, le raisonnement a employé le fait que le jeu n'autorise jamais la remise. Si le présentateur n'agit pas en exploitant sa connaissance de la véritable porte, les précédents calculs ne s'appliquent pas.

Clés pour comprendre le problème[modifier | modifier le code]

Raisonnement par la probabilité que le présentateur apporte de l'information

Prenons le cas d’un candidat qui suit toujours la même stratégie à chaque jeu, celle de maintenir systématiquement son premier choix. Ce candidat aura donc 1 chance sur 3 de gagner la voiture. En moyenne, il gagnera donc une fois sur trois et perdra forcément 2 fois sur 3, exactement comme si le présentateur n'ouvrait pas de porte.

Au contraire, un candidat qui suit la stratégie inverse, changer systématiquement son premier choix, gagnera en moyenne 2 fois sur 3, en effet, lorsque le présentateur ouvre une porte deux cas de figure sont possibles:

  • soit le candidat avait choisi la voiture (1 chance sur 3) et le présentateur ouvre n'importe quelle porte, n'apportant pas d'information,
  • soit le candidat avait choisi une chèvre (2 chances sur 3) et le présentateur ouvre la porte de la seule chèvre restante, désignant de fait la porte restante comme celle cachant la voiture.

Donc faire confiance au présentateur en changeant son choix apporte 2 chances sur 3 de gagner.

On note au passage que le présentateur n'a absolument aucune liberté dans le fait d'apporter de l'information ou non, donc que sa volonté d'aider ou de nuire n'a aucun effet.

Raisonnement par les probabilités complémentaires

Lorsque le candidat choisit une porte, il y a 1 chance sur 3 que ce soit celle de la voiture, et 2 chances sur 3 qu'il y ait une chèvre derrière. Ces probabilités sont des probabilités a priori et ne changeront donc jamais pendant toute la durée du jeu. Lorsque le présentateur fait sortir une chèvre, la probabilité d'avoir une chèvre derrière la porte choisie est toujours de 2/3, et donc la probabilité que la voiture soit derrière la porte restante est également de 2/3. D'où l'intérêt pour le candidat de choisir la porte restante et de changer son choix.

Diagrammes

La probabilité que la voiture se trouve derrière la porte restante peut être calculé avec les diagrammes ci-dessous.

Après avoir choisi la porte numéro 3, par exemple, le candidat a une chance sur trois de tomber directement sur la voiture et deux chances sur trois que la voiture soit parmi les deux portes restantes.

Puisqu'il n'y a qu'une seule voiture, il y a 100 % de chance qu'il y ait une chèvre derrière au moins une des portes 1 ou 2.

Diagramme servant à faciliter l'explication.

Le présentateur ouvre maintenant la porte 1. Bien sûr le présentateur n'ouvre jamais une porte donnant sur la voiture, donc sans surprise la porte 1 donne sur une chèvre ce qui a pour effet de transférer la probabilité de 2/3 de chances d'avoir une voiture non plus sur les portes 1 et 2 comme expliqué précédemment, mais uniquement sur la porte 2 (voir graphique ci-dessous).

De manière encore plus simple, on peut reformuler en disant que si après le choix initial du candidat il était envisageable que la voiture se trouve derrière les portes 1 et 2 (avec une probabilité de 2/3), ce n'est plus le cas après l'ouverture de la porte 1 par le présentateur : seule la porte 2 est encore susceptible de cacher la voiture (et par conséquent, toujours avec une probabilité de 2/3)

Le diagramme ci-dessous montre le même raisonnement d'une manière plus complète et plus formalisée :

Arbre des possibilités du problème de Monty Hall


Reformulons l'énoncé pour rendre le résultat intuitif

La façon de jouer ci-dessous est équivalente au "changement systématique du choix initial", mais les raisons de la répartition finale 1/3-2/3 apparaissent beaucoup plus intuitives.

Gardons les mêmes règles du jeu, mais modifions la formulation du but à atteindre : Pour gagner, au lieu de trouver la voiture, vous devez éliminer les deux chèvres (en éliminant deux portes).

Première étape : Choisissez au hasard une des trois portes à éliminer ; comme il y deux chèvres, vous avez 2 chances sur 3 d'avoir éliminé une des chèvres.
Deuxième étape : Le présentateur vous aide en éliminant, à coup sur, une porte avec une chèvre, parmi les deux portes restantes.

À ce point, votre probabilité d'avoir éliminé les deux chèvres est donc de 2/3 (étape 1) fois 1 (étape 2), c'est-à-dire de 2 chances sur 3.

Dernière étape : La seule porte qui ne soit pas éliminée a donc 2 chances sur 3 d'être celle de la voiture.


Simulation[modifier | modifier le code]

Comme démontré précédemment, les valeurs théoriques données par les lois des probabilités sont donc :

  • 1/3 de chances de gagner la voiture sans changer son choix initial, soit environ 33,3 %.
  • 2/3 de chances de gagner la voiture en changeant son choix initial, soit environ 66,7 %.

Mais on peut également pratiquer une simulation à l'aide d'un programme informatique reproduisant des parties fictives et voir si, sur un grand nombre de parties, le résultat simulé tend vers le résultat donné par les probabilités et les confirment. Pour cela deux cas sont à distinguer :

  1. Le cas où il y a un changement du choix initial
  2. Le cas où le choix initial est conservé

Dans chaque cas, il convient de réaliser un grand nombre de situation pour réduire la marge d'erreur et de noter le pourcentage où le candidat gagne la voiture.

Exemple de programme (en JavaScript) :

<script type="text/javascript">
var games = 1000000;
var winsWithSwitch = 0;
var winsWithoutSwitch = 0;
 
document.writeln("<pre>Après " + games + " parties…");
 
for(var i = 0; i < games; i++) {
    // Place le prix derrière une porte, et laisse le joueur choisir.
    var prizeDoor = Math.floor(Math.random()*3);
    var choice = Math.floor(Math.random()*3);
    // Ouvre une porte qui n'a pas de prix derrière.
    var openedDoor;
    if (choice == prizeDoor)
        openedDoor = (prizeDoor + 1 + Math.floor(Math.random()*2)) % 3;
    else
        openedDoor = (0 + 1 + 2) - choice - prizeDoor;
    // Laisse le joueur choisir la porte qui n'a pas été ouverte.
    var switchDoor = (0 + 1 + 2) - choice - openedDoor;
    if (choice == prizeDoor)
        winsWithoutSwitch++;
    if (switchDoor == prizeDoor)
        winsWithSwitch++;   
}
 
document.write("Le taux de réussite (''le candidat remporte la voiture'') sans effectuer de changement (''du choix  initial'') est de ");
document.writeln(winsWithoutSwitch / games);
document.write("Le taux de réussite en effectuant un changement est de ");
document.writeln(winsWithSwitch / games);
document.write("</pre>");
</script>

Voici un exemple de résultat du programme pour 1 000 000 simulations consécutives :

  • Le taux de réussite (le candidat remporte la voiture) sans effectuer de changement (du choix initial) est de 0,333571.
  • Le taux de réussite en effectuant un changement est de 0,666429.

La simulation ci-dessus, comme d'autres sur internet (Université de Rouen (200 itérations), (pour versions Internet explorer 4 ou +, en anglais) confirme les résultats théoriques d'1/3 et de 2/3 et ce d'autant plus que le nombre d'itérations est important ; on peut calculer la probabilité d'avoir de tels résultats en supposant que la vraie probabilité serait 1/2-1/2, elle peut être rendue arbitrairement petite en augmentant le nombre d'essais (on n'a pas signalé de simulation apportant un résultat contraire ; la confirmation du résultat 1/3-2/3 ne repose pas que sur les expériences, mais sur leur reproductibilité).

C'est cet argument qui vient à bout d'un scepticisme bien naturel, et qui a fini par convaincre Paul Erdös au départ très réticent lui-même[2], si l'on en croit Le Figaro Magazine[réf. souhaitée]. Il est en général plus facile de se tromper dans une simulation que dans un raisonnement, même probabiliste, mais celle-ci est tellement simple à écrire qu'elle ne laisse guère de place à l'erreur, quoi qu'en suggère son résultat fortement contre-intuitif.

Problème cousin : les trois prisonniers[modifier | modifier le code]

Bien que ce problème soit isomorphe à celui de Monty Hall, son interprétation ne déclenche curieusement pas de déni comparable :

Alors que trois prisonniers risquent l'exécution, l'un d'eux apprend de source sûre que l'un des trois a été gracié en dernière minute. Le gardien refuse de lui donner le nom du gracié, mais accepte de lui donner le nom de l'un des condamnés, qui n'est pas le sien. Le prisonnier doit-il se montrer rassuré en entendant le nom d'un des deux autres ?

On peut le croire, et penser que les chances de survie du prisonnier sont passées de 1/3 à 1/2. En réalité, ce problème est exactement le même que celui de Monty Hall et on démontre de la même façon que les chances pour le prisonnier d'être gracié sont toujours de 1/3. Par contre, le troisième prisonnier, celui qui n'a pas été désigné, a maintenant deux chances sur trois de s'en sortir.

Résolution par le théorème de Bayes[modifier | modifier le code]

L'énoncé renvoie en définitive à un problème de probabilité conditionnelle et selon la formulation générale du théorème de Bayes :

  • Soit A un évènement quelconque, de probabilité non nulle,
  • Soit {B_1, B_2, ..., B_n} est un ensemble d'évènements, chacun de probabilité non nulle, à la fois exhaustifs et mutuellement exclusifs,

Alors pour tout i, on a :

P(B_i|A) = \frac{P(A | B_i) P(B_i)}{\sum_{j = 1}^n P(A|B_j)P(B_j)}\, ,

Une application du théorème de Bayes au problème de Monty Hall pourrait être formulée ainsi :

Considérons le cas où la porte 3 a été choisie et aucune porte n'est encore ouverte. La probabilité que la voiture soit derrière la porte 2 p(F2) est de 1/3, probabilité qui serait en outre exactement la même pour chaque porte.

La probabilité que le présentateur ouvre la porte 1 p(O1) est alors de 1/2. En effet, le candidat ayant choisi la porte 3 et le présentateur sachant ce que cache chaque porte :

  • Soit la voiture est derrière la porte 1 : le présentateur ouvrira la porte 2.
  • Soit la voiture est derrière la porte 2 : le présentateur ouvrira la porte 1.
  • Soit la voiture est derrière la porte 3 : le présentateur ouvrira la porte 1 ou le présentateur ouvrira la porte 2 (équiprobabilité 1/2)

La probabilité que le présentateur ouvre la porte 1 sachant que la voiture est derrière la porte 2 est donc p(O1|F2) = 1. La possibilité que la voiture soit derrière la porte 2 sachant que le présentateur ouvre la porte 1 est donc :


P(F2|O1) = \frac{P(O1|F2) P(F2)}{\sum_{i=1}^{3} P(O1|Fi) P(Fi)}
 = \frac{1 \times \frac{1}{3}}{0 \times \frac{1}{3} + 1 \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{3}}
 = \frac{2}{3}

Variantes[modifier | modifier le code]

De nombreuses variantes ont été proposées, modifiant les paramètres. Il est souvent possible de trouver la solution de chaque problème par un raisonnement simple, comme dans le problème principal, mais la difficulté à saisir le rôle de chaque hypothèse conduit souvent à une réponse erronée, et il est donc préférable de d'abord résoudre le problème analytiquement.

Cas d'un nombre élevé de portes[modifier | modifier le code]

Il est peut-être plus facile d'appréhender le résultat décrit ci-dessus en considérant 100 portes et non plus trois comme précédemment. Lorsque le candidat choisit une porte, il a 99 % de chances d'en choisir une avec une chèvre derrière. Inversement, la probabilité de tomber directement sur la porte cachant le prix de valeur est très faible (1 %). Imaginons maintenant que le présentateur ouvre, non plus une seule porte, mais 98 d'un coup, révélant bien évidemment 98 chèvres, tout en proposant toujours au candidat de changer son choix initial et de choisir l'autre porte (la dernière restée close). À 99 % cette porte contiendra le prix de valeur, tout comme au début le candidat avait 99 % de chances de choisir une porte avec une chèvre. Le candidat aura donc tout intérêt a changer son choix initial.

La démonstration est la même, mais le résultat est plus intuitif : il paraît tellement suspect que toutes les portes non choisies aient été ouverte sauf une.

On pourrait aussi laisser plus d'une des portes non choisies fermées, et même autoriser à sélectionner plus d'une porte au départ (le présentateur ne pourra ouvrir aucune des portes sélectionnées). Généralement, partant de n portes fermées, après que le candidat a désigné c porte(s), le présentateur ouvre m porte(s), m étant un entier entre 0 et n-c-1. Les chances d'être la bonne porte sont de:

  • 1/n pour une des c porte(s) choisie(s) initialement
  • \frac{1}{n}*(1+\frac{m}{n-m-c}) pour chacune des autres portes.

Il est équivalent d'ouvrir m portes une par une si le candidat refuse entre chaque ouverture de changer un de ses choix ou d'ouvrir les m portes en même temps.

Ces formules s'obtiennent par calcul avec un arbre, mais on peut les trouver immédiatement en utilisant le fait que quand les portes ont à l'origine toutes la même probabilité de cacher la voiture, l'ouverture laisse les probabilités inchangées pour les portes choisies à l'origine.

Soudoyons les organisateurs[modifier | modifier le code]

Jusqu'ici, nous avons toujours supposé que les portes avaient à l'origine une probabilité égale de cacher la voiture. Que se passe-t-il si ce n'est plus le cas?

On peut par exemple imaginer que le candidat a dragué l'assistant(e) du présentateur, qui lui a révélé que la porte de droite cache une chèvre. Mal avisé, le candidat choisit d'abord la porte du milieu. Le présentateur ouvre alors la porte de gauche. Quelles sont les probabilités?

  • Si on a pleinement confiance dans l'assistant(e), 1 pour la porte centrale, 0 pour la porte de droite
  • Si l'assistant(e) ignorait tout et prétendait savoir pour se rendre intéressant(e), le problème est équivalent au problème initial, 1/3 pour la porte centrale, 2/3 pour la porte de droite
  • Si l'assistant(e) a cherché à induire le candidat en erreur, 0 pour la porte centrale, 1 pour la porte de droite

On trouve une formule générale en appliquant le théorème de Bayes: on numérote arbitrairement 1 la porte choisie à l'origine, 2 la porte ouverte par le présentateur et 3 la dernière porte; on note p_i la probabilité à l'origine pour que la porte i cache la voiture

les chances sont après ouverture de p_3'=\frac{p_3}{p_3+p_1 /2} pour la porte 3 (avec changement) et de p_3'=\frac{p_1 /2}{p_3+p_1 /2} pour la porte 1 (sans changement).

En fait, il est correct de dire que la porte choisie initialement a sa probabilité de cacher la voiture inchangée si elle est nulle ou bien si p_3=p_2, ou plus généralement pour n portes si la probabilité moyenne des portes ouvertes pour cacher la voiture était égale à la probabilité moyenne des portes non choisies pour cacher la voiture.

Rappelons qu'il est équivalent de dire que la porte choisie initialement a sa probabilité de cacher la voiture inchangée ou que les portes non choisies non ouvertes ont hérité de la probabilité des portes ouvertes.

On trouvera une analyse beaucoup plus détaillée de situations analogues, où on ne s'occupe plus directement de probabilités, mais de stratégies (au sens de la théorie des jeux) dans un article récent de Sasha Gnedin (en)[3].

Changeons les règles d'ouverture[modifier | modifier le code]

On doit à Jean-Paul Delahaye deux variantes qui éclairent bien sur l'importance des règles de l'ouverture de la porte. Dans un article de Pour la Science[4], il proposait que le présentateur ouvre une porte choisie au hasard parmi les deux portes non sélectionnées par le candidat (il peut éventuellement avoir décidé si la porte serait la plus à gauche ou à droite avant que le candidat ne désigne une porte), le jeu recommençant à zéro s'il ouvrait la porte cachant une voiture. Une seconde variante propose d'ouvrir une porte choisie au hasard parmi les deux portes cachant une chèvre, le jeu recommençant s'il ouvrait la porte sélectionnée par le candidat.

Delahaye affirma que les résultats de ces variantes étaient équivalents à ceux du problème original. Mais le courrier des lecteurs lui fit se reprendre : les probabilités sont de 1/3 pour que le changement soit gagnant, 1/3 pour que le maintien du choix initial soit gagnant, 1/3 pour qu'il y ait remise… Soit sur l'ensemble du jeu (après autant de remises qu'il aura fallu) 1 chance sur 2 de gagner quelle que soit la stratégie adoptée lors de la première manche non annulée.

On saisit ici l'importance des règles du jeu qui conditionnent l'ouverture d'une porte à la fois au choix du joueur et à la position de la bonne porte.

Introduisons encore quelques variantes pour mieux comprendre :

La porte ouverte par le présentateur est choisie parmi les 3 portes sans tenir compte ni du choix ni de la place de la voiture: on trouve cette fois 5 chances sur 9 de remise, 2 chances sur 9 de gagner en changeant, 2 chances sur 9 de gagner sans changer. Là encore, probabilité égale de gagner ultimement avec ou sans changement.

Le présentateur ouvre une des deux portes non choisies par le candidat, en choisissant 3 fois sur 4 la porte cachant la voiture si elle en fait partie: cette fois il y a une chance sur 2 de remise, 1 sur 3 de gagner sans changer et 1 sur 6 de gagner en changeant! Ultimement, 2 chances sur 3 de gagner sans changer. En biaisant les règles, on peut inverser l'efficacité des stratégies.

Plus généralement, s'il y a une probabilité p pour que la porte cachant la voiture soit ouverte (annulant la manche) quand elle n'a pas été sélectionnée, on 1/3 chance de gagner sans changer, 2*(1-p)/3 chance de gagner en changeant, 2p/3 chance de remettre en jeu. Ultimement, il y a 1/(3-2p) chance de gagner sans changer, 1-1/(3-2p) en changeant.

Dernière variante : le présentateur ouvre une porte ne cachant pas la voiture et non choisie par le candidat, mais pas au hasard: au contraire, il ouvre systématiquement la plus à droite des portes répondant aux précédents critères. Cette fois, si on choisit la porte du milieu :

  • Si la bonne porte est une des deux plus à gauche, le présentateur ouvre la porte de droite
  • Si la bonne porte est celle de droite, le présentateur ouvre la porte de gauche.

Donc, la probabilité de gagner en changeant n'est plus de 2/3 mais de 1 ou de 1/2 selon les cas, l'espérance totale restant de 2/3.

Généralisons encore: si la porte qui a été ouverte avait une probabilité p d'être ouverte s'il y avait le choix, la probabilité de gagner est de 1/(1+p) en changeant et de p/(1+p) sans changer. Avantage toujours au changement.

Cas du jeu À prendre ou à laisser[modifier | modifier le code]

Des parallèles ont souvent été évoqués entre le problème de Monty Hall et le jeu Deal or No Deal, adapté sous le nom d'À prendre ou à laisser en France. En effet, le jeu comporte un certain nombre de boîtes contenant une variété de sommes allant du très faible au très élevé, qu'il faut éliminer jusqu'à n'en avoir plus que deux. Il est donc simple de comparer les deux expériences pouvant se ramener au même principe d'ouverture de portes.

Cependant, il existe une différence majeure qui fait que le problème de Monty Hall ne s'applique pas dans À prendre ou à laisser. En effet, dans ce dernier, ce n'est pas le présentateur qui ouvre une porte, qui cache nécessairement un prix de faible valeur, mais le candidat lui-même.

Du coup, lorsqu'il décide d'ouvrir une boîte, la probabilité d'éliminer un prix de forte valeur n'est pas nulle, et du coup, lorsque le choix est proposé au candidat d'échanger sa boîte avec la dernière restante (dans le cas où il reste un prix de faible valeur et un autre de forte valeur), étant donné qu'il a éliminé toutes les autres boîtes de manière aléatoire, la probabilité de gagner le gros lot en échangeant sa boîte reste de 1/2.

Exemple concret avec 3 boîtes restantes, A et B contenant 1 € et C contenant 1 000 000 €. Chaque événement est équiprobable.

  • Le candidat a la boîte A, il élimine la boîte B, il n'échange pas : perdu.
  • Le candidat a la boîte A, il élimine la boîte B, il échange : gagné.
  • Le candidat a la boîte A, il élimine la boîte C : perdu avec ou sans échange.
  • Le candidat a la boîte B, il élimine la boîte A, il n'échange pas : perdu.
  • Le candidat a la boîte B, il élimine la boîte A, il échange : gagné.
  • Le candidat a la boîte B, il élimine la boîte C : perdu avec ou sans échange.
  • Le candidat a la boîte C, il élimine la boîte A, il n'échange pas : gagné.
  • Le candidat a la boîte C, il élimine la boîte A, il échange : perdu.
  • Le candidat a la boîte C, il élimine la boîte B, il n'échange pas : gagné.
  • Le candidat a la boîte C, il élimine la boîte B, il échange : perdu.

Lorsqu'il ne reste plus que 3 boîtes, il a donc une probabilité de 4/12 (= 1/3) de remporter le gros lot. Cependant, il a aussi une probabilité de 1/3 d'éliminer cette boîte contenant le gros lot. Du coup, dans les 8 cas possibles où il n'a pas éliminé le gros lot, il y a autant de chances de gagner en échangeant qu'en gardant sa boîte  : 1/2.

Il faut cependant noter que dans À prendre ou à laisser, il y a deux subtilités à connaître : le banquier, qui peut proposer un échange, peut également proposer une somme d'argent. La deuxième subtilité est que le banquier connaît le contenu des boîtes : du coup, en fonction de ce qu'il propose, il peut influer sur la décision du candidat et tourner la situation à son propre avantage.

Formule globale[modifier | modifier le code]

Donnons une formule globale pour toutes les variantes des deux paragraphes précédents. On notera:

concernant les probabilités avant ouverture (ces probabilités peuvent traduire par exemple le fait que le candidat est presque sûr d'avoir entendu une chèvre derrière une porte):
  • p_c la probabilité pour la porte initialement choisie soit la bonne
  • p_o la probabilité pour la porte qui est ensuite ouverte soit la bonne
  • p_t la probabilité pour la troisième porte soit la bonne

Et on a p_c+p_o+p_t=1 (et même p_c=p_o=p_t=1/3 dans le problème traditionnel)

quand la porte choisie initialement est mauvaise:
  • o_c la probabilité pour que le présentateur choisisse d'ouvrir la porte initialement choisie par le candidat (annule la manche, o_c=0 dans le problème traditionnel)
  • o_v la probabilité pour que le présentateur choisisse d'ouvrir la porte cachant la voiture (annule la manche, o_v=0 dans le problème traditionnel)
  • o_t la probabilité pour que le présentateur ouvre la troisième porte (o_t=1 dans le problème traditionnel)

Et on a o_c+o_v+o_t=1

quand la porte choisie initialement est la bonne
  • o_i la probabilité pour que le présentateur ouvre la porte "interdite", choisie et cachant la voiture (annule la manche, o_i=0 dans le problème traditionnel)
  • o_o la probabilité qu'avait d'être ouverte la porte qu'il a justement ouverte quand il peut choisir (représente par exemple la préférence du présentateur pour la gauche, o_o=1/2 dans le problème traditionnel)
  • o_a la probabilité qu'avait d'être ouverte l'autre porte (même remarque que précédemment, o_a=1/2 dans le problème traditionnel)

Et on a o_f+o_o+o_a=1

Les probabilité sont:

  • P(remise)= p_c*(o_i+o_t-1)+1-o_t
  • P(le jeu se termine à cette manche)= P_f=p_c*(1-o_i-o_t)+o_t
  • P(gain en changeant) = \frac{o_t*p_t}{o_t*p_t+o_o*p_c}*P_f
  • P(gain en maintenant le choix initial) = \frac{o_o*p_c}{o_t*p_t+o_o*p_c}*P_f

pour une manche

Et ultimement (en ayant remis en jeu autant de fois que nécessaire):

  • P(gain en changeant) = \frac{o_t*p_t}{o_t*p_t+o_o*p_c}
  • P(gain en maintenant le choix initial) = \frac{o_o*p_c}{o_t*p_t+o_o*p_c}

Les probabilités de gain final pour chacune des stratégie est égale à la probabilité de gain sur une manche sachant que cette manche aboutira.

Ces formules s'obtiennent sans trop de difficultés par calcul avec un arbre.

Problème quantique[modifier | modifier le code]

Une variante audacieuse consiste à transposer le problème dans le monde de la physique quantique. Il ne s'agit plus d'ouvrir des portes mais de réaliser des mesures sur un système. Cette fois comme on choisit un vecteur de mesure, les possibilités sont illimitées.

Les situations qui en résultent sont variables. Selon qu'on autorise le joueur seulement, le présentateur seulement ou les deux à utiliser à leur avantage les phénomènes, les probabilités sont plus ou moins en faveur du joueur, mais de façon un peu analogue au problème traditionnel, la mauvaise stratégie est de conserver son vecteur initial et la bonne est de choisir un vecteur orthogonal au vecteur initial[5].

Dans la littérature[modifier | modifier le code]

L'écrivain et scénariste britannique Mark Haddon expose et démontre le Problème de Monty Hall dans son roman le Bizarre Incident du chien pendant la nuit, ainsi que Bernard Werber à plusieurs reprises. Dans le roman PopCo de Scarlett Thomas, Alice explique le raisonnement lié au problème de Monty Hall, et la controverse qu'il engendre par ses détracteurs. Robert J. Sawyer l'évoque dans son roman Veille.

Au cinéma[modifier | modifier le code]

Dans le film Las Vegas 21, un film de blackjack, un professeur du MIT de Boston demande à son étudiant de résoudre le problème de Monty Hall pour voir s'il est assez bon pour rejoindre son club de blackjack. L'élève répond qu'il y a deux fois plus de chances avec un changement, ce qui est une bonne réponse.

On retrouve également ce problème dans l'épisode 13 de la première saison de la série Numb3rs, quand le professeur de mathématiques Charlie Eppes (interprété par David Krumholtz) tente de l'enseigner à ses élèves.

Dans l'épisode 8 de la série Sūgaku Joshi Gakuen (数学♥女子学園) Nina (interprété par Tanaka Reina) est confrontée au problème de Monty Hall lors de son défis contre Satoko (interprété par Nakajima Saki)

Notes et références[modifier | modifier le code]

  1. Le texte original était « Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice? ».
  2. Vázsonyi told Erdös about the Monty Hall dilemma. “I told Erdös that the answer was to switch,” said Vázsonyi, “and fully expected to move to the next subject. But Erdös, to my surprise, said, ‘No, that is impossible. It should make no difference.’ At this point I was sorry I brought up the problem, because it was my experience that people get excited and emotional about the answer, and I end up with an unpleasant situation.” http://archive.vector.org.uk/art10011640
  3. (en)Gnedin, Sasha "The Mondee Gills Game." The Mathematical Intelligencer, 2011 (lire en ligne)
  4. Pour la Science n°336, octobre 2005
  5. Voir en ligne cet article

Annexes[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]