Table de lignes trigonométriques exactes

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 11 novembre 2019 à 15:27 et modifiée en dernier par Anne Bauval (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.
Cercle trigonométrique et angles remarquables

Cette table de lignes trigonométriques exactes rassemble certaines valeurs des fonctions trigonométriques sinus, cosinus, tangente et cotangente sous forme d'expressions algébriques à l'aide de racines carrées de réels, parfois imbriquées. Ces expressions sont obtenues à partir des valeurs remarquables pour les angles de 30° (dans le triangle équilatéral) et de 36° (dans le pentagone régulier) et à l'aide des identités trigonométriques de duplication et d'addition des angles.

Cette table est nécessairement incomplète, dans le sens où il est toujours possible de déduire une expression algébrique pour l'angle moitié ou l'angle double. En outre, de telles expressions sont en théorie calculables pour les angles de tout polygone régulier dont le nombre de côtés est un nombre premier de Fermat, or ici seuls les deux premiers ont été exploités : 3 et 5.

Tables de valeurs

Table de lignes trigonométriques exactes[1] pour quelques angles inférieurs à π4
angle sinus cosinus tangente cotangente
0° = 0 rad 0 1 0 (non défini)
15° = π12 rad dodécagone régulier
18° = π10 rad décagone régulier
22,5° = π8 rad octogone régulier
30° = π6 rad hexagone régulier
36° = π5 rad pentagone régulier
45° = π4 rad 1 1 carré

Par soustraction, on obtient une expression pour les lignes trigonométriques d'un angle de 3°, c'est-à-dire π60 rad, puis de tous ses multiples.

Il n'existe pas d'expression algébrique des lignes trigonométriques à l'aide de radicaux réels pour l'angle de 1° ni, ce qui est équivalent — par différence (voir infra) avec celles pour 39° ci-dessus — pour l'angle de 40°, mais il en existe une formulée à l'aide de racines cubiques de nombres complexes : . .

Applications

Ces constantes peuvent être utilisées pour exprimer le volume du dodécaèdre régulier en fonction de son arête a : .

Construction

Lignes élémentaires

Représentation géométrique des angles de 0, 30, 45, 60, et 90 degrés.

Les lignes trigonométriques pour les angles de 0°, 90°, 45°, 30° et 60° peuvent être calculés dans le cercle trigonométrique à l'aide du théorème de Pythagore.

Moyen mnémotechnique
On peut restituer une partie de la table en considérant la suite (n/2), pour n allant de 0 à 4 :
Angle sin
0° = 0 rad
30° = π/6 rad
45° = π/4 rad
60° = π/3 rad
90° = π/2 rad

La table des cosinus est obtenue en inversant celle des sinus.

Triangles fondamentaux

Polygone régulier à N sommets et son triangle rectangle fondamental, d'angle au centre π/N.

La dérivation des valeurs particulières de sinus, cosinus et tangente est basée sur la constructibilité de certains polygones réguliers. Un N-gone régulier se décompose en 2N triangles rectangles dont les trois sommets sont le centre du polygone, l'un de ses sommets, et le milieu d'une arête adjacente à ce sommet. Les angles d'un tel triangle sont π/N, π/2 – π/N et π/2.

Les constantes fondamentales sont associées aux polygones réguliers dont le nombre de côtés est un nombre premier de Fermat. Les seuls nombres premiers de Fermat connus sont 3, 5, 17, 257 et 216 + 1 = 65 537.

Addition et différence d'angles

Grâce à l'identité de Bézout et aux formules d'addition et de différence, on peut déduire de ces constantes fondamentales celles des angles au centre de polygones réguliers dont le nombre de côtés est un produit de nombres premiers de Fermat distincts, ainsi que des multiples entiers de tels angles. Par exemple,

Division d'un angle en deux

Les formules d'angle moitié permettent d'en déduire une infinité de constantes supplémentaires. Par exemple, à partir de cos(π/2) = 0, on trouve :

,

où le numérateur comporte n signes  .

Simplification des expressions

Outre les simplifications élémentaires usuelles, on peut parfois désimbriquer des racines : pour réduire

(avec a et b rationnels, b ≥ 0 et ab), il suffit que le réel

soit rationnel.

Exemples
.
.

Notes et références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Exact trigonometric constants » (voir la liste des auteurs).
  1. Lorsque 5 apparaît dans une expression, on peut le remplacer par 2φ – 1, où φ est le nombre d'or.

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes