Utilisateur:SARIAN Armen/Intégrales elliptiques

Une page de Wikipédia, l'encyclopédie libre.

Les transformations de Landen transforment une intégrale elliptique (ou une fonction elliptique jacobienne) en une autre intégrale elliptique (ou une autre fonction elliptique jacobienne) de même forme, mais avec des variables différentes. Les transformations croissantes augmentent le module des fonctions elliptiques tandis que les transformations décroissantes le diminuent. Elles permettent d'effectuer plus rapidement les calculs numériques des fonctions elliptiques.

Historique[modifier | modifier le code]

Cette transformation est l'œuvre initiale du mathématicien anglais John Landen (1719-1790) qui proposa en 1775 un changement de variable très réussi pour les intégrales et fonctions elliptiques.[1]

Il a pu montrer que la longueur d'un arc d'hyperbole pouvait être exprimée par les longueurs des arcs de deux ellipses différentes. Chacune d’elles présente une excentricité qui peut être identifiée au module elliptique. La relation particulière entre les excentricités des deux ellipses que Landen découvrit plus tard porte son nom.

Cette transformation a été redécouverte indépendamment par Carl Friedrich Gauss.[2] La forme actuelle de la transformation de Landen a été développée par Joseph-Louis Lagrange, Adrien-Marie Legendre et Gauss.[3] En utilisant la transformation de Landen, Gauss a calculé la longueur de la lemniscate[4]. En particulier, les travaux de Legendre ont joué un rôle majeur pour Niels Henrik Abel et Charles Gustave Jacob Jacobi dans leur développement des fonctions elliptiques.

Landen a découvert une nouvelle façon de calculer, et pas seulement les fonctions elliptiques. Son idée principale, selon laquelle la fonction calculée peut être représentée par une fonction de la même forme mais avec d'autres paramètres qui tendent vers certaines limites lors de la récursion, a ensuite été largement utilisée en mathématiques computationnelles. Cette transformation modulaire joue un rôle important dans les mathématiques modernes.[5]

Définitions[modifier | modifier le code]

Intégrales elliptiques[modifier | modifier le code]

Les intégrales elliptiques de première, deuxième et troisième espèce s'écrivent respectivement souvent ainsi :[A 1]

La forme de la première intégrale est appelée la forme trigonométrique ou la forme canonique de Legendre ; la forme de la deuxième intégrale est appelée la forme jacobienne. On appelle le module, le paramètre, le comodule, l'angle modulaire, l'amplitude et la caractéristique. Si est quelconque, l'intégrale est dite incomplète, si , l'intégrale est dite complète.

Les intégrales elliptiques complètes de première et deuxième espèce sont respectivement :

On définit aussi et .

Fonctions elliptiques jacobiennes[modifier | modifier le code]

On appelle fonction amplitude de Jacobi la fonction réciproque de , notée  :

Les trois fonctions jacobiennes de base (1827) sont :

  • la fonction sinus de Jacobi :
  • la fonction cosinus de Jacobi :
  • la fonction delta de Jacobi :

Gudermann (1838), puis Glaisher (1882) introduiront les neuf autres fonctions jacobiennes :

Jacobi a aussi introduit :

  • la coamplitude : [A 2]
  • la fonction epsilon de Jacobi[6] :
  • la fonction zn de Jacobi :
  • la fonction zeta de Jacobi :

On a aussi[A 3] :

  • le gudermannian :
  • la fonction correspondant à  :
  • la fonction correspondant à  : .

Transformations de Landen des intégrales elliptiques de première espèce[modifier | modifier le code]

Au sens large, la transformation de Landen désigne une transformation reposant sur le principe selon lequel la fonction calculée peut être représentée par une fonction de la même forme mais avec d'autres paramètres qui tendent vers certaines limites lors de la récursion ; tandis que la transformation de Landen à proprement parlé désigne la transformation qui utilise le changement de variable que Landen a proposé[7].

Les transformations changent le module en un autre module ou en changeant la variable d'intégration en une nouvelle variable ou définie ainsi :

  • pour la transformation de Landen :
  • pour la transformation gaussienne :

Ainsi, pour la transformation de Landen comme pour la transformation gaussienne, on a les relations suivantes (on pose : ) :

Une transformation qui change en est une transformation croissante et une transformation qui change en est une transformation décroissante parce que :

Transformation de Landen[modifier | modifier le code]

Démonstration[modifier | modifier le code]

Commençons par vérifier la réciprocité de :

On a :

En multipliant cette dernière égalité par , on a bien : . Ce changement de variable permet que l'angle transformé devienne plus petit que l'angle d'origine : .[8]

Les grandeurs apparaissant dans l'intégrale elliptique de première espèce sont :

Ainsi :

Amplitude[modifier | modifier le code]

Calculons l'amplitude (on pose : ) :

Calculons l'amplitude . Puisque , on a :

Si on utilise la notation de l'intégrale elliptique avec un point-virgule, on est obligé de décomposer l'intégrale en tronçons ne dépassant pas puisque cette notation ne permet que d'exprimer des intégrales elliptiques dont l'amplitude ne dépasse pas  : si , .

Autre formulation[modifier | modifier le code]

Si , , et sont tels que et , alors la transformation de Landen stipule que :

La transformation de Landen peut donc être exprimée soit en fonction de son module elliptique , soit en fonction de son comodule .

En effet :

  • En réécrivant  :
et en divisant par , on a :
ce qui donne :
  • De plus, on a :

Transformation gaussienne[modifier | modifier le code]

Démonstration[modifier | modifier le code]

Commençons par vérifier la réciprocité de :

On a bien :

Les grandeurs apparaissant dans l'intégrale elliptique de première espèce sont :

On a alors :

Amplitude[modifier | modifier le code]

Calculons l'amplitude (on pose : ) :

Calculons l'amplitude  :

Itération[modifier | modifier le code]

Quel que soit '"`UNIQ--postMath-00000066-QINU`"', '"`UNIQ--postMath-00000067-QINU`"' varie de 0 à '"`UNIQ--postMath-00000068-QINU`"' lorsque '"`UNIQ--postMath-00000069-QINU`"' varie de 0 à '"`UNIQ--postMath-0000006A-QINU`"'.
Transformation de Landen

Cliquer pour voir et modifier le graphique.
Quel que soit '"`UNIQ--postMath-0000006C-QINU`"', '"`UNIQ--postMath-0000006D-QINU`"' varie de 0 à '"`UNIQ--postMath-0000006E-QINU`"' lorsque '"`UNIQ--postMath-0000006F-QINU`"' varie de 0 à '"`UNIQ--postMath-00000070-QINU`"'.
Transformation de Gauss

Cliquer pour voir et modifier le graphique.
et pour par pas de . La courbe rouge correspond au cas .

En répétant plusieurs fois de suite la transformation de Landen ou gaussienne, on aura si on utilise la transformation croissante, et si on utilise la transformation décroissante. évolue ainsi : et . Lorsque le module est égal à 0 ou 1, l'intégrale elliptique peut être calculée analytiquement :[9]

Si l'on part d'un module et d'une amplitude arbitraires, une intégrale elliptique générale de première espèce peut être calculée numériquement ainsi :

  • Pour la transformation de Landen :
  • Pour la transformation gaussienne :

, , et sont les valeurs asymptotiques de l'amplitude transformée. On remarquera que double à chaque itération lorsque .[A 4]

Les convergences de et sont quadratiques : et doublent à peu près à chaque itération, ce qui signifie que peu d'itérations suffisent : , , et .

L'intégrale elliptique complète de première espèce est :[10]

On a[11] :

Transformations de Landen des intégrales elliptiques de deuxième espèce[modifier | modifier le code]

Démonstration[modifier | modifier le code]

On pose (avec )[A 5] :

et

Le module devient , si bien que . On a . et sont respectivement la moyenne arithmétique et géométrique de et . Si la transformation est itérée plusieurs fois, alors les paramètres et convergent très rapidement vers une valeur commune, même s’ils sont initialement d’ordres de grandeur différents. La valeur limite est appelée moyenne arithmético-géométrique de et et notée ou . On a alors . On a :

et :

En intégrant, on obtient :

On fera attention comme précédemment si on utilise les notations avec un point-virgule.

Itération[modifier | modifier le code]

L'intégrale elliptique complète de deuxième espèce est :[A 6]

Moyenne arithmético-géométrique[modifier | modifier le code]

On remarque une formule de Gauss :

Donc, on a :

En opérant et , on a :

Transformations de Landen des intégrales elliptiques de troisième espèce[modifier | modifier le code]

On a aussi une transformation de Landen des intégrales elliptiques de troisième espèce.

Transformation de Landen des fonctions elliptiques jacobiennes[modifier | modifier le code]

Le module elliptique initial est . La transformée de Landen croissante augmente le paramètre et la transformée de Landen décroissante diminue le paramètre. En répétant la transformation de Landen croissante, le paramètre converge vers 1 et la fonction elliptique se rapproche d'une fonction hyperbolique. En répétant la transformation de Landen décroissante, le paramètre converge vers 0 et la fonction elliptique se rapproche d'une fonction trigonométrique. Cette propriété rend la transformée de Landen utile pour les calculs numériques de fonctions elliptiques. On utilise ici la transformation de Landen pour la transformation croissante des fonctions elliptiques jacobiennes et la transformation de Gauss pour leur transformation décroissante.

Démonstration de la transformation croissante[modifier | modifier le code]

Démonstration de la transformation décroissante[modifier | modifier le code]

En opérant les transformations et au sein de , on a :

Conversion de nombres imaginaires[modifier | modifier le code]

La transformation de Landen croissante et la transformation de Landen décroissante sont alternées par la transformation imaginaire.

[A 7]

En utilisant la transformation de Landen croissante, on a :

En utilisant la transformation imaginaire, on a :[A 7]

En opérant et , on a :

Il s'agit d'une transformation de Landen décroissante.

Transformations de degré supérieur[modifier | modifier le code]

Les transformations de modules suivantes peuvent être effectuées à l'aide des Amplitudinis Sine et des Amplitudinis Delta[12] :

Ici, la fonction sinus de Jacobi est solution de l'équation .

Globalement, la formule suivante s'applique à toutes les valeurs et  :

Récapitulatif[modifier | modifier le code]

Intégrales elliptiques de première espèce[modifier | modifier le code]

Transformations de Landen des intégrales elliptiques de première espèce
Transformation croissante Transformation décroissante
Landen
Gauss

Intégrales elliptiques de deuxième espèce[modifier | modifier le code]

Transformations de Landen des intégrales elliptiques de deuxième espèce
Transformation décroissante
Landen

Fonctions elliptiques jacobiennes de base[modifier | modifier le code]

Transformations de Landen d'une fonction elliptique
Transformation croissante (Landen) Transformation décroissante (Gauss)

Propriétés[modifier | modifier le code]

Développement limité[modifier | modifier le code]

Intégrale elliptique complète de première espèce[modifier | modifier le code]

L’intégrale elliptique complète de première espèce, , est :

où :

Si , en utilisant la transformation de Landen ou gaussienne décroissante, on se ramène dès la première itération à une forme où  :

Intégrale elliptique complète de deuxième espèce[modifier | modifier le code]

L’intégrale elliptique complète de deuxième espèce, , est :

Si , en utilisant la transformation de Landen décroissante, on se ramène dès la première itération à une forme où  :

Théorème d'addition[modifier | modifier le code]

Intégrale elliptique incomplète de première espèce[modifier | modifier le code]

L'intégrale elliptique incomplète de première espèce a le théorème d'addition suivant :

On a ensuite, selon les circonstances (c.-à-d. en tenant compte du fait que et ) :

Intégrale elliptique incomplète de deuxième espèce[modifier | modifier le code]

L'intégrale elliptique incomplète de deuxième espèce a le théorème d'addition suivant :

On a ensuite, selon les circonstances (c.-à-d. en tenant compte du fait que et ) :

Références[modifier | modifier le code]

  1. DOI 10.1098/rstl.1775.0028
  2. C. F. Gauss et Nachlass, « Arithmetisch geometrisches Mittel, Werke, Bd. 3 », Königlichen Gesell. Wiss., Göttingen,‎ , p. 361–403
  3. G.M. Scarpello, D. Ritelli and A. Scimone, The hyperbola rectification from Maclaurin to Landen and the Lagrange-Legendre transformation for the elliptic integrals, arXiv:1209.4909.
  4. ru:Обсуждение:Преобразование_Ландена
  5. H. McKean and V. Moll, Elliptic Curves: Function Theory, Geometry, Arithmetic; Cambridge University Press, Cambridge (1997). (ISBN 0-521-65817-9).
  6. Modèle:Dlmf
  7. Transformation de Landen
  8. A.L. Baker, Elliptic Functions - An Elementary Textbook for Students of Mathematics, John Wiley & Sons, New York (1890).
  9. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York (1964). (ISBN 0-486-61272-4).
  10. G.N. Watson, The Marquis and the Land-Agent; A Tale of the Eighteenth Century, Mathematical Gazette 17, 5-17 (1934). Foredrag for the British Mathematical Association, 1933. Gjengitt i J.J. Berggren, J. Borwein and P. Borwein, Pi: A Source Book, Springer-Verlag, New York (2004). (ISBN 978-1-4419-1915-1).
  11. Elliptic Functions: Landen's Transformation
  12. de:Elliptische_Integrale#Landensche_Transformationen