Utilisateur:Prosopee/brouillon1

Une page de Wikipédia, l'encyclopédie libre.
Frank Drake a inventé l'équation de Drake.

L'équation de Drake est une célèbre proposition mathématique concernant les sciences telles que l'exobiologie, la futurobiologie, l'astrosociologie, ainsi que le projet SETI (Search for Extra-Terrestrial Intelligence).

Cette équation a été suggérée par Frank Drake en 1961 afin de tenter d'estimer le nombre potentiel de civilisations extraterrestres dans notre galaxie avec qui nous pourrions entrer en contact. Le principal objet de cette équation pour les scientifiques est de déterminer ses facteurs, afin de connaître le nombre probable de ces civilisations.

Cette équation est souvent mise en balance avec le paradoxe de Fermi qui, avec des méthodes différentes, formule une conclusion diamétralement opposée à celle de Drake. Le principe anthropique faible, quant à lui, suggère que dans le cas d'un multivers nous n'aurions pas de raison particulière de nous trouver dans un des univers ayant donné naissance plus d'une fois à la vie consciente.

L'équation de Drake[modifier | modifier le code]

L'équation proprement dite est un produit de sept facteurs[1] :

où :

  • N est le nombre de civilisations extraterrestres dans notre galaxie avec lesquelles nous pourrions entrer en contact ;

et :

  • R* est le nombre d'étoiles en formation par an dans notre galaxie ;
  • fp est la fraction de ces étoiles possédant des planètes ;
  • ne est le nombre moyen de planètes potentiellement propices à la vie par étoile ;
  • fl est la fraction de ces planètes sur lesquelles la vie apparaît effectivement ;
  • fi est la fraction de ces planètes sur lesquelles apparaît une vie intelligente ;
  • fc est la fraction de ces planètes capables et désireuses de communiquer ;
  • L est la durée de vie moyenne d'une civilisation, en années.

Estimation historique des paramètres de l'équation de Drake[modifier | modifier le code]

Les scientifiques de nos jours ont de considérables désaccords sur les valeurs possibles de ces paramètres. Les valeurs utilisées par Drake et ses collègues en 1961 sont[2] :

  • R* = 10 ;
  • fp = 0,5 ;
  • ne = 2 ;
  • fl = 1 ;
  • fi = fc = 0,01 ;
  • L = 10 000.

La valeur de R* est la moins discutée. fp est plus incertaine, mais est plus constante que les autres valeurs. On croyait que ne était plus importante, mais la découverte de nombreuses géantes gazeuses avec des orbites près de leur étoile sème le doute sur les planètes qui peuvent supporter la vie aussi proche de leur étoile. D'autres rétorquent cependant que l'échantillon d'exoplanètes découvertes jusqu'à présent n'est absolument pas représentatif (il est normal que l'on commence par détecter les objets les plus gros) et que les exoplanètes telluriques restent à découvrir.

De plus, la plupart des étoiles de notre galaxie sont des naines rouges, qui possèdent un faible rayonnement ultraviolet, qui a contribué à l'évolution de la vie sur Terre. À la place, elle possède un violent rayonnement, principalement en rayon X, une propriété non favorable à la vie telle que nous la connaissons (des simulations suggèrent également que ce rayonnement érode les atmosphères des planètes). La possibilité de vie sur des satellites de planète géante gazeuse (par exemple le satellite de Jupiter Europe) renforce de manière incertaine ce cas de figure.

En regardant l'humanité sur Terre, il est évident que fl semble élevé, la vie sur Terre semble avoir commencé presque immédiatement après que les conditions l'ont rendue possible, suggérant que l'abiogenèse est relativement « facile » une fois que les conditions sont favorables. Par ailleurs, on découvre sur Terre de plus en plus d'organismes vivants dits extrémophiles parvenant à survivre dans des conditions extrêmes (fond marins, calderas, environnement soufrés, etc.) Ce facteur n'en reste pas moins très discutable.

Une donnée qui aurait un impact majeur sur ce dernier serait la présence controversée de vie (primitive) sur Mars. La vérification du développement de la vie sur Mars, indépendamment de celle sur Terre, plaiderait en faveur d'une valeur élevée pour ce facteur.

fi, fc et L sont évidemment plus petits que supposés. fi a été modifié depuis la découverte du fait que l'orbite du système solaire dans la Galaxie est circulaire, avec une distance telle qui reste en dehors du bras de la Galaxie pendant des centaines de millions d'années (évitant les radiations des novas). Aussi, les satellites rares comme la Lune semblent contribuer à la conservation de l'hydrogène en brisant la croûte terrestre, provoquant une magnétosphère, par vagues de chaleur et de mouvements, et stabilisant l'axe de rotation de la planète. De plus, puisqu'il semble que la vie se développe juste après la formation de la Terre, l'explosion cambrienne dans laquelle une large variété de formes de vie multicellulaires se transforma en êtres pluricellulaires, apparaît un temps considérable après la formation de la Terre, ce qui suggère la possibilité que des conditions spéciales sont nécessaires pour que cela arrive. Des scénarios comme la Terre boule de neige ou la recherche dans les événements d'extinction ont suggéré la possibilité que la vie sur Terre soit relativement fragile. Une fois encore, la controverse sur le fait que la vie prit forme sur Mars, mais cessa d'exister, affecterait les estimations de ces facteurs.

Le célèbre astronome Carl Sagan spécula que les valeurs de tous les facteurs, hormis celle de la durée de vie d'une civilisation, doivent être relativement élevées, et le facteur déterminant est de savoir si une civilisation possède ou non la capacité technologique d'éviter une auto-destruction. Dans le cas de Sagan, l'équation de Drake a été une motivation forte pour son intérêt dans les problèmes environnementaux et son effort pour nous avertir des dangers des armes nucléaires.

(On notera, qu'à partir de l'année 2001, nous pouvons attribuer la valeur 50 à R* avec le même degré de confiance que Drake usa en 1961 en lui donnant la valeur 10).

La chose remarquable à propos de l'équation de Drake est que, en mettant des valeurs plausibles pour chaque paramètre, on obtient généralement une valeur de N >> 1. Ce résultat a été une source de grandes motivations pour le projet SETI. Cependant, ceci est en conflit avec la valeur observée de N = 1, soit une seule humanité dans la Voie lactée, la nôtre.

Ce conflit est aussi formulé dans le paradoxe de Fermi, celui-ci ayant été le premier à suggérer que notre compréhension de ce qu'est une valeur « conservative » pour quelques paramètres peut être excessivement optimiste, ou que quelques autres facteurs peuvent intervenir en ce qui concerne la destruction d'une vie intelligente.

D'autres hypothèses donnent des valeurs de N inférieures à 1, mais quelques observateurs croient que c'est encore compatible avec les observations dues au principe anthropique : peu importe combien est basse, la probabilité qu'une galaxie donnée ait une vie intelligente, la Galaxie dans laquelle nous nous trouvons doit avoir au moins une espèce intelligente par définition. Il pourrait y avoir des centaines de galaxies dans notre amas sans aucune vie intelligente, mais évidemment nous ne sommes pas dans ces galaxies pour observer ce fait.

Quelques exemples de calculs de l'équation de Drake[modifier | modifier le code]

Avec les paramètres de Drake :

R* = 10/an, fp = 0,5, ne = 2, fl = 1, fi = fc = 0,01, et L = 5000 années

N = 10 * 0,5 * 2 * 1 * 0,01 * 0,01 * 5000 = 5.

Nous pouvons donner des résultats plus optimistes, en considérant que 10 % des civilisations deviennent capables de communiquer, et qu'elles étendent leur longévité jusqu'à 100 000 années, en considérant la vie de leur système planétaire (ce qui est très court à l'échelle géologique) :

R* = 20/an, fp = 0,1, ne = 0,5, fl = 1, fi = 0,5, fc = 0,1, et L = 100 000 années
N = 20 * 0,1 * 0,5 * 1 * 0,5 * 0,1 * 100 000 = 5 000.

Estimations courantes des paramètres de l'équation[modifier | modifier le code]

Cette section tente de lister les meilleures estimations à l'époque actuelle (2004) pour les paramètres de l'équation de Drake, ils sont susceptibles de changer si de meilleurs résultats sont trouvés.

  • R* est le nombre d'étoiles en formation par an dans notre galaxie
estimé par Drake à 10/an
  • fp est la fraction de ces étoiles possédant des planètes
estimé par Drake à 0,5
  • ne est le nombre moyen de planètes par étoile potentiellement propices à la vie
estimé par Drake à 2
  • fl est la fraction de ces planètes sur lesquelles la vie apparaît effectivement
estimé par Drake à 1.

En 2002, Charles H. Lineweaver et Tamara M. Davis (à l'université de Nouvelle-Galles du Sud et avec le Centre australien d'Astrobiologie) ont estimé fl > 0,33 utilisant un argument statistique basé sur le temps qu'a mis la vie pour se développer sur Terre. Lineweaver a aussi déterminé qu'approximativement 10 % des systèmes planétaires dans notre galaxie sont propices à la vie, ayant des éléments lourds, étant loin des supernovas et étant stables entre eux pendant une période suffisante[3].

  • fi est la fraction de ces planètes sur lesquelles apparait une vie intelligente
estimé par Drake à 0,01.

Cependant, les systèmes planétaires dans l'orbite galactique avec une exposition aux radiations aussi basse que le système solaire sont plus de 100 000 fois plus rares.

  • fc est la fraction de ces planètes capables et désireuses de communiquer
estimé par Drake à 0,01
  • L est la durée de vie moyenne d'une civilisation
estimé par Drake à 10 000 années.

Une limite basse de L peut être estimée à partir de notre civilisation avec l'avènement de la radioastronomie en 1938 (daté du radiotélescope parabolique de Grote Reber) jusqu'à l'année courante. En 2010, cela donne une valeur de L égale à 72.

Dans un article du Scientific American, Michael Shermer estima L à 420 années, en compilant les durées de six civilisations historiques. Utilisant 28 civilisations plus récentes que l'Empire romain, il calcula L à environ 304 années pour les civilisations « modernes ». Notons, cependant, que cela ne tient compte que des civilisations qui n'ont pas détruit leur technologie, et qui l'ont transmise aux civilisations qui les ont suivies, Shermer estima donc que l'on devait regarder cette valeur de manière pessimiste.

Dans la pratique, il faut remarquer que l'équation consiste à essayer de déterminer une quantité inconnue à partir d'autres quantités qui sont tout aussi inconnues qu'elle. Il n'existe donc pas de garantie que l'on soit davantage fixé après cette estimation qu'avant (argument nommé parfois dans la littérature garbage in, garbage out).

Il est à remarquer aussi qu'en l'absence d'expérience concrète, le cerveau humain est très mal équipé pour estimer des probabilités à moins d'un pourcent[4], et que nous parlons dans le langage courant de « probabilité de 1 sur 1 000 » ou « 1 sur 100 000 » pour exprimer en fait que nous estimons quelque chose peu probable. C'est parce que nous estimons mal les probabilités très faibles que des jeux comme le Loto perdurent, peu de gens ayant effectué un calcul qui leur donne plus de probabilité de mourir avant le tirage que de gagner un lot d'un montant très important.

Le monde bayésien travaille plus volontiers en décibels. Une probabilité de 10-7 vaut alors -70 dB et une probabilité de 10-9 vaut -90 dB, ce qui les différencie nettement.

Équation de Seager[modifier | modifier le code]

En 2013, Sara Seager a proposé une version modifiée de l'équation de Drake pour estimer le nombre de planètes habitable dans la galaxie[5]. Au lieu de considérer des extraterrestres ayant une technologie radio, Seager s'est simplement intéressée à la présence d'une quelconque vie extraterrestre. L'équation se concentre sur la recherche de planètes avec des biomarqueurs, molécules (gaz ici) produits par les organismes vivants qui peuvent s'accumuler dans l'atmosphère d'une planète à des niveaux détectables par des télescopes spatiaux distants[5].

L'équation de Seager est :

avec :

  • N : le nombre de planètes avec des signes de vie détectables,
  • N* : le nombre d'étoiles observées,
  • FQ : la fraction d'étoiles calmes,
  • FHZ : la fraction d'étoiles avec des planètes rocheuses situées dans la zone habitable,
  • Fo : la fraction de ces planètes qui peuvent être observées,
  • FL : la fraction de ces dernières qui abritent effectivement la vie,
  • FS : la fraction de celles-ci sur lesquelles la vie produit des signatures gazeuses détectables.

Notes et références[modifier | modifier le code]

  1. L'équation sur le site de SETI
  2. D'après la simulation proposée sur le site de NOVA
  3. (en) [1]
  4. Jonathan Baron, président de la Society for Judgment and Decision Making, estime que dans l'ensemble nous surestimons les probabilités très faibles (underestimate very high frequencies and overestimate very low ones, Thinking and Deciding, 4e éd., p. 138
  5. a et b The Drake Equation Revisited: Interview with Planet Hunter Sara Seager Devin Powell, Astrobiology Magazine 4 September 2013.

Sources[modifier | modifier le code]

  • (en) Charles H. Lineweaver et Tamara M. Davis, Does the Rapid Appearance of Life on Earth Suggest that Life is Common in the Universe?, arXiv:astro-ph/0205014 v1 2 mai 2002
  • (en) Michael Shermer, Why ET Hasn't Called, Scientific American, août 2002, p. 21

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Document utilisé pour la rédaction de l’article : document utilisé comme source pour la rédaction de cet article.

Monographies[modifier | modifier le code]

  • (en) Stephen Webb, If the Universe Is Teeming with Aliens... Where Is Everybody ? : Fifty Solutions to Fermi's Paradox and the Problem of Extraterrestrial Life, Springer, , 299 p. (ISBN 978-0387955018) Document utilisé pour la rédaction de l’article
  • Carl Sagan (trad. Vincent Bardet), Cosmic connection : L'Appel des étoiles [« Cosmic connection : an Extraterrestrial Perspective »], Éditions du Seuil, coll. « Points Sciences », (ISBN 978-2020049436, ASIN 2020049430), chap. 14 Document utilisé pour la rédaction de l’article
  • (en) Michael Michaud, Contact with Alien Civilizations : Our Hopes and Fears about Encountering Extraterrestrials, New York, Copernicus Books, (ISBN 978-0-387-28598-6, lire en ligne [PDF]) Document utilisé pour la rédaction de l’article
  • (en) Ronald Bracewell, The galactic club : Intelligent life in outer space, San Francisco, Freeman and Co., , 152 p. (ISBN 978-0716703532, présentation en ligne)
  • (en) Steven J. Dick, Plurality of worlds: the origins of the extraterrestrial life debate from Democritus to Kant, CUP Archive, , 256 p. (ISBN 9780521319850)
  • (en) John Barrow et Frank Tipler, The Anthropic Cosmological Principle, Clarendon Press, (ISBN 0192821474, présentation en ligne)
  • (en) Brian M. Stableford, Science fact and science fiction: an encyclopedia, Routledge, , 729 p. (ISBN 9780415974608) Document utilisé pour la rédaction de l’article
  • (en) Stephen H. Dole, Habitable Planets for Man, Blaisdell Publishing Company, (ISBN 0-444-00092-5)
  • (en) Ben R. Finney et Eric M. Jones (éd.), Interstellar Migration and the Human Experience, Berkeley, University of California Press, Document utilisé pour la rédaction de l’article
  • (en) Freeman Dyson, Disturbing the Universe, New York, Harper & Row, (ISBN 9780060111083) Document utilisé pour la rédaction de l’article
  • (en) Robert T. Rood et James S. Trefil, Are we alone ? : The possibility of extraterrestrial civilizations, New York, Charles Scribner's Sons, (ISBN 978-0684178424)
  • Vincent Boqueho (préf. André Brack), La vie, ailleurs ?, Dunod, coll. « Quai des sciences », , 256 p. (ISBN 978-2100558629)

Articles[modifier | modifier le code]

  • (en) I. Bezsudnov et A. Snarskii, « Where is everybody ? - Wait a moment… New approach to the Fermi paradox », ARXIV,‎ (lire en ligne [PDF]) Document utilisé pour la rédaction de l’article
  • (en) Eric M. Jones, « « Where is everybody? » : an account of Fermi's question », Los Alamos National Laboratories, Springfield, VA, NTIS,‎ (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) Geoffrey A. Landis (NASA Lewis Research Center), « The Fermi Paradox: An Approach Based on Percolation Theory », Journal of the British Interplanetary Society, London, vol. 51,‎ , p. 163-166 (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) T. B. Kuiper et G. D. Brin, « Resource Letter ETC-1: extraterrestrial civilization », American journal of physics, Pasadena, CA, Jet Propulsion Laboratory, California Institute of Technology, no 57(1),‎ , p. 12-8 (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) Freeman J. Dyson, « Interstellar Transport », Physics Today, vol. 21, no 10,‎ , p. 41-45 (lire en ligne [PDF]) Document utilisé pour la rédaction de l’article
  • (en) Freeman J. Dyson, « Search for Artificial Stellar Sources of Infrared Radiation », Science, vol. 131, no 10,‎ , p. 1667-1668 (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) Martyn J. Fogg, « Temporal Aspects of the Interaction among First Galactic Civilizations: The 'Interdict Hypothesis' », Icarus, no 69,‎ , p. 370-384 (lire en ligne [PDF]) Document utilisé pour la rédaction de l’article
  • (en) Gerald Cleaver et Richard K. Obousy, « The Fermi Paradox, Galactic Mass Extinctions and the Drake Equation », Université Baylor, Document utilisé pour la rédaction de l’article
  • (en) Claudio Maccone, « The statistical Fermi paradox », Journal of the British Interplanetary Society,‎ (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) Seth D. Baum, Jacob D. Haqq-Misra et Shawn D. Domagal-Goldman, « Would Contact with Extraterrestrials Benefit or Harm Humanity? A Scenario Analysis », Acta Astronautica, vol. 68, nos 11-12,‎ , p. 2114-2129 (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) John A. Ball, « The zoo hypothesis », Icarus, no 19,‎ , p. 347-349 Document utilisé pour la rédaction de l’article
  • (en) Stephen Baxter, « The planetarium hypothesis: A resolution of the Fermi paradox », Journal of the British Interplanetary Society, no 54,‎ , p. 210-216 Document utilisé pour la rédaction de l’article
  • (en) Ted Peters, « Exo-theology: speculations on extraterrestrial life », The Center for Theology and the Natural Sciences, vol. 14, no 3,‎ , p. 187-206 (lire en ligne [PDF]) Document utilisé pour la rédaction de l’article
  • (en) Michael H. Hart et Michael Papagiannis (éd.), « N is Very Small », dans Strategies for the search for life in the universe, Boston, D. Reidel Publishing Co., , 19-25 p. Document utilisé pour la rédaction de l’article
  • (en) Jill Tarter, The Search for Extraterrestrial Intelligence (SETI), vol. 39, , 511–48 p. (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) Robert A. Freitas, « There is no Fermi Paradox », Icarus, vol. 62, no 3,‎ , p. 518-520 (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) John M. Smart, « Answering the Fermi Paradox: Exploring the Mechanisms of Universal Transcension », Journal of Evolution and Technology (JET),‎ (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) F. J. Tipler, « Extraterrestrial Beings Do Not Exist », Quarterly Journal of the Royal Astronomical Society, vol. 21, no 267,‎ Document utilisé pour la rédaction de l’article
  • Pierre Lagrange, « Les extraterrestres sont-ils seuls dans l’univers ? », Ciel et Espace,‎ (lire en ligne [PDF]) Document utilisé pour la rédaction de l’article
  • (en) Glen David Brin, « The Great Silence : The controversy concerning extraterrestrial intelligent life », Quarterly Journal of the Royal Astronomical Society, vol. 24,‎ , p. 283-309 (lire en ligne [PDF]) Document utilisé pour la rédaction de l’article
  • (en) Kendrick Frazier, « Carl Sagan Takes Questions: More From His ‘Wonder and Skepticism’ CSICOP 1994 Keynote », The Skeptical Inquire, vol. 29, no 4,‎ (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) Giuseppe Cocconi et Philip Morrison, « Searching for Interstellar Communications », Nature, vol. 184,‎ , p. 844–846 Document utilisé pour la rédaction de l’article
  • (en) George Abell et James L. Christian (éd.), « The Search for Life Beyond Earth: A Scientific Update », dans Extraterrestrial intelligence, Prometheus,‎ , 53–71 p. Document utilisé pour la rédaction de l’article
  • (en) Jacob D. Haqq-Misra et Seth D. Baum, « The Sustainability Solution to the Fermi Paradox », Journal of British Interplanetary Society, vol. 62,‎ , p. 47-51 Document utilisé pour la rédaction de l’article
  • (en) David Viewing, « Directly Interacting Extraterrestrial Technological Communities », Journal of the British Interplanetary Society, vol. 28, no 735,‎ Document utilisé pour la rédaction de l’article
  • (en) W. R. Hosek, « Economics and the Fermi paradox », Journal of the British Interplanetary Society, no 60,‎ , p. 137-141
  • (en) Milan M. Ćirković, « Fermi's paradox : the last challenge for copernicanism ? », Serbian Astronomical Journal, vol. 178,‎ , p. 1-20 (DOI 10.2298/SAJ0978001C, lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) Milan M. Ćirković, I. Dragicevic et T. Beric-Bjedov, « Adaptationism Fails to Resolve Fermi's Paradox », Serbian Astronomical Journal, vol. 180,‎ , p. 89-100 (lire en ligne [PDF])
  • (en) J. Deardorff, B. Haisch, B. Maccabee et H.E. Puthoff, « Inflation-Theory Implications for Extraerrestrial Visitation », Journal of British Interplanetary Society, ufoskeptic.org, vol. 58,‎ , p. 43-50 (lire en ligne)
  • (en) M.H. Hart, « An explanation for the absence of extraterrestrials on Earth », Quarterly Journal of the Royal Astronomical Society, vol. 16,‎ , p. 128-135 (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) P.S. Wesson, « Cosmology, extraterrestrial intelligence, and a resolution of the Fermi-Hart paradox », Quarterly Journal of the Royal Astronomical Society, no 31,‎ , p. 161-170
  • (en) J.D. Haqq-Misra et S.D. Baum, « The sustainability solution to the Fermi paradox », Journal of the British Interplanetary Society, no 62,‎ , p. 47-51 Document utilisé pour la rédaction de l’article
  • (en) C. Cotta et A. Morales, « A computational analysis of galactic exploration with space probes: Implications for the Fermi paradox », Journal of the British Interplanetary Society, no 62,‎ , p. 82-88
  • (en) Frank Tipler, « Extraterrestrial intelligent beings do not exist », Royal Astronomical Society, Quarterly Journal, vol. 21,‎ , p. 267-281 (lire en ligne) Document utilisé pour la rédaction de l’article
  • (en) Robert A. Freitas Jr., « The search for extraterrestrial artifacts (SETA) », Journal of the British Interplanetary Society, vol. 36,‎ , p. 501-506
  • (en) Ernst Mayr et Edward Regis (éd.), « The probability of extraterrestrial intelligent life », dans Extraterrestrials: Science and alien intelligence, Cambridge, Cambridge University Press, , 23-30 p.
  • (en) Peter Schenkel, « The Nature of ETI, Its Longevity and Likely Interest in Mankind: The Human Analogy Re-Examined », Journal of British Interplanetary Society, vol. 52,‎ , p. 13–18 (présentation en ligne) Document utilisé pour la rédaction de l’article
  • (en) Carl Sagan et Frank Drake, « The search for extraterrestrial intelligence », Scientific American: Exploring space (Special issue),‎ , p. 150-159 (lire en ligne)
  • (en) Nicholas Rescher et Edward Regis (éd.), « Extraterrestrial Science », dans Extraterrestrials: Science and alien intelligence, Cambridge, Cambridge University Press, (lire en ligne), p. 83- 116
  • (en) T. B. Tang, « Fermi Paradox and C.E.T.I. », Journal of British Interplanetary Society, vol. 35,‎ , p. 236-240
  • (en) Carl Sagan (éd.) et alii, « The number of advanced galactic civilizations », dans Extraterrestrial Intelligence: CETI, Cambridge, M.I.T. Press, (présentation en ligne), p. 164-187
  • (en) Guillermo A. Lemarchand, « Speculations on the First Contact : Encyclopedia Galactica or the Music of the Spheres? », dans When SETI Succeeds: The Impact of High-Information Contact, , 153–163 p. Document utilisé pour la rédaction de l’article

{{Portail|astronomie|exoplanètes|ufologie}} [[Catégorie:Astrophysique]] [[Catégorie:Modèle sociopsychologique du phénomène ovni]]