Oxyde de fer

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche
Poudre d'hématite α-Fe2O3. La couleur brune rougeâtre indique que le fer est à l'état d'oxydation +III.

Un oxyde de fer est un composé chimique résultant de la combinaison d'oxygène et de fer.

Les oxydes de fer sont abondants dans la nature, soit dans des roches, notamment minerai de fer, soit dans les sols. Les oxydes de fer, surtout synthétiques, servent soit comme pigments, soit pour leurs propriétés magnétiques.

Typologie[modifier | modifier le code]

On classe les oxydes de fer selon l'état d'oxydation de leurs atomes de fer :

Pédologie[modifier | modifier le code]

Les minéraux contenant du fer (principalement oxydes et hydroxydes de fer) font partie, après les argiles, des minéraux les plus importants du sol, jouant un rôle fondamental dans les processus de pédogénèse. La diversité des minéraux contenant du fer est due : « à la large répartition de cet élément dans de nombreux types de roches ; à sa facilité de passage de l'état Fe(II) à Fe(III) et réciproquement en fonction des variations du potentiel redox ; à sa capacité à s'hydrater plus ou moins et à constituer ainsi des structures minérales variées, cristallisées ou non ; à son intervention dans de nombreux processus pédologiques, comme la brunification, la chéluviation, diverses oxydoréductions, etc. »[1].

Les oxydes de fer naturels colorent les sols
L'hématite, maghémite et les oxyhydroxydes de fer, goethite, limonite, lépidocrocite donnent une couleur du sol rouge fréquente autour de la Méditerranée et sous les tropiques. Les ocres à base de kaolinite-goethite donnent des sols jaunes, rouille, brun rougeâtre à brun foncé[2],[3].
Leur couleur permettent d'en déterminer le degré de drainage
Un sol jaune brun « rouillé » en profondeur indique un sol bien drainé ; une couleur grisâtre un mauvais draînage.

Oligoélément biodisponible[modifier | modifier le code]

,De nombreux micro-organismes faisant partie du microbiote du sol ainsi que les racines des plantes ont un rôle sur la météorisation biogénique (biométéorisation) des roches et minéraux. Ils sont capables d'y solubiliser les métaux selon trois mécanismes agissant seuls ou en complément selon les espèces en cause et les conditions du sol : l'acidolyse, la complexolyse et la rédoxolyse[4],[5]. En milieu réducteur anoxique, des micro-organismes à réduction dissimilatrice de métaux (bactéries ferroréductrices) qui ont un métabolisne respiratoire aéro–anaérobie facultatif ou anaérobie strict solubilisent le fer ferrique fixé dans les oxydes de fer par le processus de rédoxolyse, et le mobilisent comme accepteur d'électrons, pour leur respiration anaérobie ou en parallèle ou complément de fermentation. Certains champignons et bactéries de la rhizosphère produisent des substances organiques complexant le fer (acides organiques impliqués dans l'acidolyse, chélateurs de type sidérophores impliqués dans la complexolyse qui complexe le fer ferrique des oxydes) et permettent ainsi sa solubilisation[6].

Ces communautés microbiennes font ainsi partie des régulateurs principaux des formes du fer dans le sol, en rendant cet élément contenu dans ces oxydes disponibles pour d'autres organismes, le fer ayant un rôle d'oligoélément fondamental pour les êtres vivants, qui l'utilisent dans leur métabolisme (formation de la chlorophylle chez les végétaux, de l'hémoglobine chez les animaux vertébrés[1].

Usage[modifier | modifier le code]

Pigments[modifier | modifier le code]

Source du Rio Tinto, près de Nerva, en Espagne. La forte concentration en oxydes de fer rend l'eau rougeâtre.

Les oxydes de fer donnent toute une série de pigments utilisés dans les beaux-arts depuis les origines, puisqu'on en trouve dans des sépultures du Paléolithique moyen[7]; en Égypte ancienne, les oxydes de fer colorent le verre et les poteries[8].

La réputation de certaines terres à tendance jaune et rouge en raison des oxydes de fer qu'elles contiennent s'établit à la Renaissance. Les artistes ont appris depuis l'Antiquité à en modifier la couleur par calcination[9], qui rend les oxydes de fer plus rougeâtres.

Les oxydes de fer naturels, mêlés d'argile, se désignent comme terres ou ocres[10]. Les ocres se distinguent des terres par leur proportion plus faible en oxyde de fer (moins de 25 %), et, du point de vue de leur emploi, par leur opacité. On trouve :

  • La terre de Sienne : (PBr7 du Colour Index), naturelle (jaunâtre) ou brûlée (rouge-orangée).
  • La terre d'ombre : (PBr7), naturelle (brune) ou brûlée (brun-rougeâtre), se distingue de la terre de Sienne par sa forte proportion en oxydes de manganèse, aux propriétés siccatives pour l'huile.
  • L'ocre jaune : (PY43) qui va du jaune verdâtre au jaune orangé.
  • L'ocre rouge : (PR102) aux différentes nuances brun-rouge.

La production de pigments d'oxyde de fer synthétiques est attestée en Europe au XVIe siècle. Ils se connaissent d'abord sous les noms de Caput Mortuum et colcotar entre autres. À la fin du XVIIIe siècle, les procédés de fabrication de pigments à base de fer donnent les couleurs de Mars, rouge, jaune, violet (PRV3, p. 80). Ces couleurs chères rivalisent avec les pigments naturels[11]. Depuis le début du XXe siècle, les oxydes de fer naturels tendent à disparaitre au profit des oxydes de fer synthétiques[réf. souhaitée].

Parmi les pigments synthétiques, le sesquioxyde de fer (PR101) donne le rouge anglais ; avec de l'alumine, qui permet une certaine désaturation des couleurs et une amélioration de la transparence (PRV3, p. 135), il constitue le rouge de Mars. La teinte des pigments d'oxyde de fer varie selon le traitement de la matière par calcination[12]. Le Colour Index répertorie neuf procédés de production du rouge oxyde de fer. La plupart de ces procédés, utilisant des oxydes de fer sous-produits d'autres réactions chimiques industrielles, obtiennent d'abord un pigment jaune, noir ou brun, rougi ensuite par calcination (PRV3, p. 136).

La teinte de couleurs vendues sous le même nom commercial varie selon les fabricants ; assez peu en ce qui concerne les couleurs pour artistes[13], énormément quand il s'agit de décoration d'intérieur[14].

Les pigments oxydes de fer sont solides et s'utilisent sans danger en peinture à l'huile. Les oxydes de fer rouges résistent bien à la chaleur, jusqu'à 500 °C (PRV3, p. 134).

On utilise l'oxyde de fer en céramique pour colorer une pâte céramique, un émail. L'oxyde de fer est aussi présent naturellement dans certaines argiles — les ocres — comme la faïence rouge.

L'oxyde de fer micacé est un pigment naturel gris utilisé pour sa protection contre la corrosion (PRV3, p. 132).

Colorant alimentaire[modifier | modifier le code]

Le code E172 indique un oxyde de fer utilisé comme colorant alimentaire[15].

Enregistrement magnétique[modifier | modifier le code]

Les oxydes de fer donnant des cristaux magnétiques sont à la base des enduits utilisés pour l'enregistrement magnétique.

Imagerie médicale[modifier | modifier le code]

L'imagerie médicale de résonance magnétique nucléaire utilise comme produit de contraste des oxydes de fer, sous deux formes

  • Forme microparticulaires, dite small superparamagnetic iron oxide ou SPIO, de plus de 50 nanomètres.
    Les particules sont injectées dans les veines, pour détecter les lésions hépatiques de petite taille et accessoirement pour les caractériser.
    Une ingestion par la bouche permet aussi de diagnostiquer certains problèmes du tube digestif ;
  • Forme nanoparticulaire, dite ultrasmall superparamagnetic iron oxide ou USPIO).
    Après administration intraveineuse, étant moins capturés par le foie et la rate, ils ont une demi-vie plasmatique assez longue (plus de 36 heures). Les macrophages normalement présents dans les tissus (ganglions lymphatiques) ou en cas de pathologie (sclérose en plaques, rejet de greffe, plaque d’athérome, accident vasculaire cérébral, arthrite rhumatoïde…) peuvent les assimiler.
    Ils sont utilisés pour détecter des cancers, des maladies dégénératives et inflammatoires mais aussi pour les pathologies cardiovasculaires comme les plaques d'athéromes. Ce sont aussi des biomarqueurs permettant de mesurer l'effet de certains traitements[16].

Ces oxydes sont, sous ces deux tailles différentes, souvent formulées avec du dextrane ou ses dérivés[17].
En dépit de risques suspectés pour la santé, les nanoparticules d'oxyde de fer sont approuvées par la FDA pour cet usage au regard du bénéfice qu'il apporte pour le diagnostic de certaines pathologies, grâce au champ magnétique local qu’ils génèrent (« effet superparamagnétique »)[18]). Les oxydes métalliques nanoparticulaires semblent très intéressants comme produits de contraste (testés chez l'animal pour d'autres métaux), mais des « défis majeurs restent à relever en matière de sécurité et de questions de métabolisme »[19],[20].

Annexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • Jean Petit, Jacques Roire et Henri Valot, Encyclopédie de la peinture : formuler, fabriquer, appliquer, t. 3, Puteaux, EREC, , p. 133sq « Oxydes de fer naturels », « Oxyde de fer synthétiques ».

Articles connexes[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. a et b Jean-Michel Gobat, Michel Aragno, Willy Matthey, Le sol vivant : bases de pédologie, biologie des sols, PPUR Presses polytechniques, (lire en ligne), p. 19.
  2. Patrick De Wever, Jean-Marie Rouchy, Peinture secrète et sacrée : l’ocre, EDP sciences, (lire en ligne), p. 7.
  3. Michel Robert, Jacques Varet, Le Sol: interface dans l'environnement : ressource pour le développement, Masson, , p. 17
  4. (en) Larry Barton, Iron Chelation in Plants and Soil Microorganisms, Academic Press, , 506 p. (lire en ligne)
  5. (en) Jean-Michel Gobat, Michel Aragno, Willy Matthey, The Living Soil: Fundamentals of Soil Science and Soil Biology, Science Publishers, , p. 121-123.
  6. Jacques Berthelin, Cécile Quantin, Sébastien Stemmler et Corinne Leyval, « Biodisponibilité du fer dans les sols: rôle majeur des activités microbiennes », Comptes Rendus de l’Académie d’Agriculture de France,‎ (lire en ligne)
  7. Philippe Walter et François Cardinali, L'art-chimie : enquête dans le laboratoire des artistes, Paris, Michel de Maule, , p. 39.
  8. Ball 2010, p. 89-90.
  9. Philip Ball (trad. Jacques Bonnet), Histoire vivante des couleurs : 5000 ans de peinture racontée par les pigments [« Bright Earth: The Invention of Colour »], Paris, Hazan, , p. 51.
  10. Ball 2010, p. 200-201 ; Petit, Roire et Valot 2005, p. 133.
  11. Jacques Blockx, Compendium à l'usage des artistes peintres : Peinture à l'huile — Matériaux — Définition des couleurs fixes et conseils pratiques suivis d'une notice sur l'ambre dissous, Gand, L'auteur, (lire en ligne), p. 49.
  12. Blockx 1881, p. 49 ; www.artiscreation.com.
  13. Rouge anglais 063 Caran d'Ache ; rouge anglais 339 Rembrandt ; rouge anglais 627 Sennelier ; rouge anglais (« light red ») 362 Winsor & Newton.
  14. Le rouge anglais 150-32 Auro rappelle plutôt le rouge des uniformes de Horse guards et en général des tuniques rouges, autrefois obtenu à partir de la garance ou de cochenille.
  15. Codex alimentarius, « Noms de catégorie et système international de numérotation des additifs alimentaires », sur http://www.codexalimentarius.net, (consulté le 19 mai 2010)
  16. B. Bonnemain, Mise au point Nanoparticules : le point de vue d’un industriel. Applications en imagerie diagnostique ; Nanoparticles: The industrial viewpoint. Applications in diagnostic imaging ; Annales Pharmaceutiques Françaises Volume 66, Issues 5-6, November-December 2008, Pages 263-267 doi:10.1016/j.pharma.2008.07.010 (Résumé)
  17. Oleg Lunov, Tatiana Syrovets, Berthold Büchele, Xiue Jiang, Carlheinz Röcker, Kyrylo Tron, G. Ulrich Nienhaus, Paul Walther, Volker Mailänder, Katharina Landfester, Thomas Simmet, The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages ; Biomaterials, Volume 31, Issue 19, July 2010, Pages 5063-5071
  18. Jesse L. Winer, Charles Y. Liu, Michael L.J. Apuzzo, The Use of Nanoparticles as Contrast Media in Neuroimaging: A Statement on Toxicity ; World Neurosurgery, Available online 7 November 2011, doi:10.1016/j.wneu.2011.08.013 (Résumé)
  19. Tore Skotland, Tore-Geir Iversen, Kirsten Sandvig, New metal-based nanoparticles for intravenous use: requirements for clinical success with focus on medical imaging (Review Article) Nanomedicine: Nanotechnology, Biology and Medicine, Volume 6, Issue 6, December 2010, Pages 730-737 (Résumé)
  20. Claire Corot, Philippe Robert, Jean-Marc Idée, Marc Port, Recent advances in iron oxide nanocrystal technology for medical imaging (Review Article), Advanced Drug Delivery Reviews, Volume 58, Issue 14, 2006-12-01, Pages 1471-1504 (Résumé)