Explosif

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche
Explosions lors d'une démonstration (Marine Corps Air Station Miramar, Californie)

Un explosif est défini par un mélange de corps susceptibles lors de leur transformation, de dégager en un temps très court, un grand volume de gaz porté à haute température, ce qui constitue une explosion.

Histoire[modifier | modifier le code]

Poudre à canon[modifier | modifier le code]

En Chine, aux alentours du IXe siècle, a été élaborée la poudre à canon ou poudre noire. Elle était composé de salpêtre, de soufre, et de charbon de bois. Ce mélange avait cependant une force explosive très inférieure à celle de la poudre que nous fabriquons aujourd'hui. La poudre noire est désignée en chinois par 火药 (huǒyào), autrement dit « drogue à feu » car les composants qui servent à la fabriquer étaient utilisés comme remèdes. Elle était aussi considérée comme un traitement efficace de la gale, des rhumatismes et des maladies infectieuses et parasitaires. La composition exacte de la poudre est donnée pour la première fois dans un traité militaire chinois, le Wujing Zongyao, daté de 1044. Son usage à des fins militaires date de la même période. Elle a d'abord été utilisée pour fabriquer les premières bombes (des grenades à poudres noire), puis les premières armes à feu. Elle fut ensuite diffusée dans les pays arabes pendant la même période, avant que ces derniers ne la transmette en Europe au XIIIe siècle. En France, ces armes ont été utilisées pour la premières fois à la Bataille de Crécy en 1346. C'est au XVe siècle que les pays européens ont commencé à fabriquer des canons à poudre. Au XVIIIe siècle, la poudre s'emploie pour exploiter la mine. La poudre à canon reste donc, jusqu'au XVIIIe siècle, le seul explosif connu. S'ensuit de nombreuses transformations où l'on voit différer le pourcentage de ses composants de fabrication suivant son utilisation avec l'ajout de nouveau (poudre de mine, poudre de chasse, feux d'artifice, spectacle pyrotechniques, etc). En 1886 est inventé la poudre pyroxylée qui ne dégage pas de fumée et laisse peu de trace lors de sa combustion, aussi elle ne craint pas l'humidité contrairement à la poudre noire originelle. C'est celle qui est encore utilisée aujourd'hui dans les armes à feu.

Révolution apportée dans le domaine des explosifs[modifier | modifier le code]

Chlorate de potassium[modifier | modifier le code]

En 1788, Claude-Louis Berthollet crée ce qu'il appelle le muriate oxygéné de potasse[1] (chlorate de potassium), mais elle se révèle trop dangereuse pour les armes car elle est instable. Mais elle est utilisée pour remplir les boulets creux (obus de marine) fabriqués à Meudon en 1794. Après l'invention des armes à percussion en 1807, son usage sera principalement réservé à l'amorçage. Ce n'est pas un explosif à poudre, mais un chlorate, le premier de cette espèce.

Fulminate de mercure[modifier | modifier le code]

En 1800, Edward Charles Howard trouve un procédé de synthèse du fulminate de mercure, utilisé dans les amorces des armes à percussion. C'est le premier explosif créé à base de fulminate. Le procédé consiste à reprendre dans l'éthanol une solution de nitrate mercurique obtenue elle-même par l'action de l'acide nitrique sur le mercure. D'abord testé et utilisé comme composant explosif, il a rapidement été utilisé comme amorce pour les munitions vers la fin des années 1830. Il a ainsi rapidement remplacé le silex comme moyen de déclencher l'ignition de la poudre noire utilisée dans les cartouches d'armes à feu à chargement par la bouche. Soixante-dix ans plus tard, à la fin du XIXe siècle et dans la plupart des cas au XXe siècle, le fulminate de mercure a remplacé le chlorate de potassium dans les amorces des munitions pour fusil, pistolet et obus car contrairement à celui-ci, il n'est pas corrosif, mais tend à s'affaiblir ou à devenir instable avec le temps. Jusqu'à la Seconde Guerre mondiale, pratiquement toutes les amorces de fusils, de carabines, de revolvers et autres munitions à percussion (dont obus) étaient à base de fulminate de mercure, mais, en raison de sa dangerosité et de sa toxicité due aux ions mercure, il est peu à peu remplacé par des composés moins toxiques et plus faciles à fabriquer en temps de guerre comme l'azoture de plomb, le styphnate de plomb ou les dérivés de tétrazène, dont l'hydrate de 1-(5-tétrazolyl)-4-guanyl tétrazène. En 2007, sa structure cristalline a été déterminée.

En 1846, on utilisa le fulmicoton, de la nitrocellulose stabilisée synthétisée par Christian Schönbein.

Classification[modifier | modifier le code]

Par comportement physique[modifier | modifier le code]

De l'explosion résulte la création d'un front d'onde de pression. La vitesse de ce front d'onde détermine la classification des explosifs. Il existe deux grands groupes d'explosifs :

La différence entre les régimes de déflagration et de détonation n'est pas toujours simple. Selon les conditions d'utilisation, un explosif normalement déflagrant peut détoner, et un explosif normalement détonant peut déflagrer. Les poudres sont conçues pour un régime de déflagration, c’est-à-dire une auto-combustion subsonique (la réaction chimique se propage à la vitesse de 10 à 400 m/s dans l'explosif lui-même). Les explosifs progressifs se situent entre les poudres et les brisants. Ils suivent le régime de détonation supersonique (de 2 000 à 3 500 m/s). Les explosifs brisants détonent également (de 4 000 à 9 000 m/s).

Les explosifs peuvent aussi être utilisés pour la propulsion de projectiles ou fusées sous forme de poudre ou propergol. Le régime est alors la combustion qui doit être très bien maîtrisée (exemple, les deux propulseurs d'appoint à poudre de chaque côté de la fusée Ariane).

Explosif déflagrant[modifier | modifier le code]

Article détaillé : Déflagration.

Un explosif soufflant est un explosif qui provoque lors de son explosion une pression dans les directions de moindre résistance. Si on place une petite charge d'explosif soufflant sur un mur, lors de l'explosion la pression va s'appliquer à l'opposé du mur, le mur restera intact. Au contraire, si on avait placé une charge d'explosif brisant, le mur aurait été endommagé ou perforé.

On peut citer à titre d'exemple les explosifs soufflants suivants :

Explosif brisant[modifier | modifier le code]

Article détaillé : Détonation.

Un explosif brisant est un explosif qui applique, lors de son explosion, une pression sur la zone la plus résistante. Un exemple simple : si on place une petite charge d'explosif brisant sur un mur, lors de l'explosion la pression va s'appliquer sur le mur et provoquer la perforation du mur. Au contraire, si on avait placé une charge d'explosif soufflant, le mur n'aurait pas été perforé, mais il y aurait eu un fort effet de souffle dans la direction opposée au mur.

Utilisation d'explosifs par des sapeurs durant la Première Guerre mondiale

Les explosifs brisants ont une vitesse de détonation qui dépasse 6 050 m/s. Le plus puissant connu (l'octanitrocubane) atteint la vitesse de détonation de 10 100 m/s. On peut citer parmi eux les groupes -nitros et nitrates, les peroxydes organiques, les chlorates et les perchlorates, les halogénures d'azote, les azotures et les fulminates.

Ils sont généralement utilisés dans le domaine militaire ou dans le bâtiment. Pour la pyrotechnie, on préférera les explosifs déflagrants, car les brisants sont trop complexes à manipuler. De plus, ils sont souvent très toxiques et même parfois cancérigènes.

En génie civil, la nitroglycérine, trop instable, est inutilisable sous sa forme liquide courante ; elle a son utilisation la plus répandue en médecine, car c'est un puissant vaso-dilatateur. Les ingénieurs civils lui préfèrent le plus souvent la dynamite, qui est de la nitroglycérine stabilisée par ajout d'un stabilisant (le plus souvent de la cellulose). Au XXIe siècle, les explosifs dits plastiques, composés d'explosif et de gélatinisant (afin de « flegmatiser » la matière active), sont les plus utilisés.

En génie militaire, plusieurs explosifs sont utilisés :

  • la mélinite pure (connue sous le nom d'acide picrique ou bien encore de 2,4,6-trinitrophénol) n'est plus utilisée de nos jours, mais sert d'étalon pour donner le coefficient d'utilisation pratique (CUP) d'un explosif, mesurant sa puissance ;
  • le TNT ou trinitrotoluène a été largement utilisé pendant la Seconde Guerre mondiale ;
  • l'hexolite ou RDX, dont la composition C-4 est un dérivé ;
  • l'octolite (usage militaire exclusif) est dans les années 1980 l’explosif le plus puissant ;
  • la donarite (nom commercial, de l'allemand Donner, « tonnerre ») est un explosif contenant 70 à 80 % de nitrate d'ammonium, 15 à 25 % trinitrotoluène, et 5 % de nitroglycérine[2]. Sa vitesse de détonation est de 4 100 m/s. Utilisé par le génie militaire de la Wehrmacht, il est toujours employé dans l'exploitation minière ;
  • le tétrytol.

De la poudre d'aluminium est parfois ajoutée au TNT pour augmenter la puissance du souffle (ex : ammonal).

Par sensibilité[modifier | modifier le code]

Explosif primaire[modifier | modifier le code]

En pyrotechnie, un explosif primaire ou initiateur est un produit chimique explosif, celui qui le premier amorce la chaîne pyrotechnique conduisant à l'explosion d'une charge d'explosif.

On les trouve par exemple dans les détonateurs ou les amorces. Ce sont généralement des produits toxiques et dangereux, source de nombreux accidents depuis leur découverte.

Fonctions[modifier | modifier le code]

Sa vocation peut être d'amorcer la réaction à lui seul, ou de mettre à feu un booster explosif servant de pont entre un explosif de faible énergie et un autre qui possède une grande énergie, mais une réactivité faible.

Toxicologie[modifier | modifier le code]

Ces produits sont souvent toxiques et toujours dangereux. Ils participent aux séquelles de guerre, y compris séquelles de pollution.

Exemples[modifier | modifier le code]

Explosif secondaire[modifier | modifier le code]

Un explosif secondaire est un explosif capable de fournir une très grande quantité d'énergie. C'est le cas par exemple du C3 et du C4.

  • Trinitrotoluène (TNT)
  • Nitroglycérine…

Cependant un explosif de ce genre est fabriqué de manière à être puissant mais stable dans la mesure du possible. Il a donc besoin d'une énergie d'activation pour exploser. Il est toujours placé après l'explosif primaire qui joue le rôle de détonateur.

L'explosion de cette charge primaire fournie peu d'énergie comparée à la charge secondaire mais suffisamment de chaleur et une onde de choc pour activer cette seconde charge.

Booster explosif[modifier | modifier le code]

Un booster explosif, ou explosif secondaire, sert de pont entre un explosif de faible énergie et un autre qui possède une grande énergie, mais une réactivité faible.

Il concentre l'énergie d'un explosif primaire de façon à amorcer la réaction du deuxième explosif. Les boosters sont créés en mélangeant des composants de grande réactivité et de grande énergie en proportions variables.

Par exemple, un initiateur (tel un tube explosif) ne possède pas l'énergie d'activation nécessaire pour déclencher la réaction d'une grande quantité d'explosif puissant (tel le PETN, le TNT et l'ANFO), le booster amène l'énergie d'activation nécessaire pour démarrer la réaction chimique.

Le tétryl était populaire au XXe siècle comme booster, particulièrement durant la Seconde Guerre mondiale, mais n'est plus beaucoup utilisé au XXIe siècle, remplacé par des mélanges répondant mieux aux exigences des explosifs modernes.

Ces produits sont souvent toxiques.

Formation et réglementation[modifier | modifier le code]

Pour des raisons de sécurité des utilisateurs et de lutte contre le terrorisme, la mise en œuvre d'explosifs nécessite de suivre une formation et de respecter la réglementation en vigueur dans le pays[3],[4],[5].

Il faut disposer d'autorisations et être titulaire d'un permis ou d'un certificat. Ces diplômes se préparent lors d'une formation par un organisme agréé. Ils sont obtenus après réussite à un examen.

Il est en général interdit de fabriquer des explosifs. On peut se procurer ces derniers auprès de fabricants qui ne commercialisent que des produits ayant reçu un agrément technique[6],[7].

L'utilisateur devra aussi respecter les règles concernant le transport et le stockage des explosifs.

Par ailleurs, le code pénal français sanctionne à une peine de trois ans d'emprisonnement et 45 000 € d'amende pour diffusion à un public non professionnel de modes de fabrication d'engins explosifs. La peine peut aller jusqu'à cinq ans d'emprisonnement et 75 000 €, lorsque la diffusion de cette information circule sur un média de type Internet[8].

Risques et dangers pour l'environnement ou la santé[modifier | modifier le code]

Les explosifs agréés sont des produits sûrs, mais peuvent présenter des dangers si des consignes de sécurité ne sont pas respectées lors de leur utilisation :

  • activation accidentelle d'éléments sensibles comme les détonateurs à la suite d'un choc, d'une perturbation électromagnétique ;
  • certains composants de certains explosifs sont toxiques, et peuvent être source d'intoxication due aux gaz dégagés par l'explosif dans un milieu mal ventilé ;
  • intoxication par contact avec la peau en manipulant les produits ;
  • périmètre de sécurité non respecté ;
  • projection ou déstabilisation de roches et autres matériaux ;
  • incident lors d'un tir nécessitant une intervention de l'artificier sur un dispositif endommagé ;
  • effet cancérigène ou de perturbateur endocrinien, pour certains explosifs (ex. : perchlorates) ;
  • eutrophisation, ou dystrophisation induite par les explosifs riches en azote quand ils sont solubilisés dans l'eau (y compris pour des explosifs modernes très stables dans l'air et réputés peu agressifs envers l'environnement car photodégradables), ou partiellement biodégradables, tels que le dinitramide de guanylurée (Fox-12 ou GuDN) ; ce dernier libère dans l'eau une grande quantité d'azote, dont sous forme d'ion nitrate (NO
    3
    )[9],[10].

Remarque : les explosifs primaires comme les poudres sont tellement sensibles qu'ils peuvent réagir avec la seule électricité statique générée par le corps humain ou par frottements.

Dangers spécifiques des explosifs faits maison[modifier | modifier le code]

Les feux d'artifices, explosifs faits maison, ou engin explosif improvisé (EEI), peuvent présenter des dangers pour l'utilisateur lors de leur fabrication, leur transport ou leur utilisation. Certains mélanges sont instables, ils détonent ou s'enflamment spontanément à des températures basses (40 °C), ou lors d'un faible choc, ou après un certain laps de temps. L'opérateur peut être blessé (main arrachée, brûlures, œil crevé, perte de l'audition, intoxication, éviscération partielle) ou tué. Ces engins ou mélanges peuvent provoquer des blessures à d'autres personnes et causer des dégâts matériels importants (parois et vitres soufflées, incendie).

Détection[modifier | modifier le code]

Des détecteurs électroniques sont peu à peu mis au point, mais on a beaucoup utilisé et on utilise encore le flair de certains animaux comme les chiens, capables de détecter des soupçons de certains produits sous forme d'explosif préparé ou même sous forme de composant primaire (mercure, baryum, chloratesetc.), non sans risque parfois pour leur santé[11].

Plusieurs méthodes (dont par analyse chimique et/ou signature isotopique) permettent de détecter la provenance de certains explosifs ou de leurs composants, dans le cadre d'enquêtes par exemple[12].

Notes et références[modifier | modifier le code]

  1. Pierre Lemay, Revue d'histoire de la pharmacie, 49e année, no 169, , Berthollet invente des explosifs, p. 53-57
  2. D'après U.S. Bureau of Mines, Dictionary of Mining, Mineral, and Related Terms, , CD-ROM.
  3. En Suisse : Loi fédérale sur les substances explosibles 941.41
  4. En France : Décret relatif au marquage, à l'acquisition, à la livraison, à la détention, au transport et à l'emploi des produits explosifs
  5. Au Canada : Loi sur les explosifs (L.R., 1985, ch. E-17)
  6. Emploi des explosifs, guide pratique (décret du 27 mars 1987) - Édition janvier 1995, p. 12.
  7. En France : Loi Perben II Art. 322-6-1
  8. Mort d'un étudiant qui avait fabriqué un engin explosif grâce à Internet - Société, sur Le Monde.fr
  9. Perreault N, Halasz A, Thiboutot S, Ampleman G et Hawari J. (2013), A joint Photo-Microbial Process for the Degradation of the Insensitive Munition FOX-12 (N-guanylurea-dinitramide), Environ. Sci. Technol., 2013-04-17, résumé
  10. H Östmark, U Bemm, H Bergman et A Langlet (2002), N-guanylurea-dinitramide: a new energetic material with low sensitivity for propellants and explosives applications ; Energetic Materials ; Thermochimica Acta, vol. 384, n° 1–2, 25 février 2002, p. 253–259 ; Energetic Materials Department, Swedish Defence Research Agency, FOI, SE-172 90, Stockholm, Suède, DOI:10.1016/S0040-6031(01)00800-0
  11. Patti Gahagan et Tina Wismer, Toxicology of Explosives and Fireworks in Small Animals, DOI:10.1016/j.cvsm.2011.12.011.
  12. David Widory, Jean-Jacques Minet et Martine Barbe-Leborgne, Sourcing explosives: A multi-isotope approach, Special Issue: Forensic application of isotope ratio mass spectrometry (IRMS), Science & Justice, vol. 49, n° 2, juin 2009, p. 62–72

Articles connexes[modifier | modifier le code]