Portail:Probabilités et statistiques

Cette page est un bon portail. Cliquez pour plus d’informations.
Une page de Wikipédia, l'encyclopédie libre.
Logo proba 4.svg
Portail des probabilités et statistiques

Il y a actuellement 1 798 articles liés au portail.

« On est jamais aussi bien servi que par le hasard. »
Présentation
Ce portail est une section du portail Mathématiques, consacrée à la théorie des probabilités et à la statistique.

La théorie des probabilités est l'étude mathématique des phénomènes caractérisés par le hasard et l'incertitude ; la statistique est l'activité qui consiste à recueillir, traiter et interpréter un ensemble de données. Il existe des interconnexions entre ces deux domaines des sciences de l'aléatoire.

Ces domaines mathématiques sont en relation avec les autres domaines mathématiques comme l'algorithmique, l'analyse, l'informatique théorique ou la logique. Les probabilités se retrouvent dans la théorie des jeux, la biologie, l'économie ou la physique, entre autres. On retrouve la statistique dans des domaines comme l'économie, la physique, la sociologie,...

Vous êtes cordialement invités à participer au projet. Pour toutes questions ou remarques vous pouvez consulter notre page de discussion.

Lumière sur...
Monkey-typing.jpg
Le paradoxe du singe savant est un théorème selon lequel un singe qui tape indéfiniment et au hasard sur le clavier d’une machine à écrire pourra « presque sûrement » écrire un texte donné.

Dans ce contexte, « presque sûrement » est une expression mathématique avec un sens précis et le singe n'est pas vraiment un singe mais une métaphore pour un mécanisme abstrait qui produit une séquence aléatoire de lettres à l'infini. Le théorème illustre les dangers de raisonner sur l'infini en imaginant un très grand nombre, mais fini, et vice versa. La probabilité qu'un singe tape avec exactitude un ouvrage complet comme Hamlet de Shakespeare est si minuscule que la chance de se produire au cours d'une période de temps de l'ordre de l'âge de l'univers est minuscule, mais pas nulle.

Des variantes de ce théorème incluent plusieurs, voire un nombre infini, de dactylographes et le texte à écrire passe d'une simple phrase à tous les livres d'une bibliothèque. En France on parle de tous les livres de la Bibliothèque nationale de France, en anglais de l'œuvre complète de William Shakespeare. On trouve des traces de ce genre de déclaration dans les œuvres d'Aristote, Blaise Pascal et Jonathan Swift jusqu'à son évolution vers la version avec un dactylographe,

Le résultat fut présenté par Émile Borel en 1909 dans son livre de probabilités. Ces « singes » ne sont pas des singes réels, et ne se comportent pas comme de vrais singes ; ils sont plutôt une métaphore vivante pour une machine abstraite à produire des lettres dans un ordre aléatoire, par exemple un ordinateur ou un générateur aléatoire connecté à une imprimante.

Le saviez-vous ?
  • Le premier usage du mot « probabilité » apparait en 1370 avec la traduction de l'éthique à Nicomaque d'Aristote par Oresme et désigne alors « le caractère de ce qui est probable ».
  • La théorie de la probabilité classique ne prend réellement son essor qu'avec les notions de mesure et d'ensembles mesurables qu'Émile Borel introduit en 1897.
  • La première application industrielle des statistiques eut lieu lors du recensement américain de 1890, qui mit en œuvre la carte perforée inventée par le statisticien Herman Hollerith.
  • Parmi les domaines étudiés par le très influent groupe mathématique Bourbaki, la théorie des probabilités a été délaissée, voire rejetée.
  • En 1993, Robert Faid reçut le prix Ig Nobel pour avoir calculé les chances exactes (710 609 175 188 282 000 contre 1) que Mikhaïl Gorbatchev soit l'Antéchrist.
  • Le mardi , la médaille Fields a été attribuée à quatre mathématiciens, dont le français Wendelin Werner, qui est spécialisé en probabilités. C'est la première médaille Fields attribuée à un probabiliste.
Une image au hasard
Arbre binaire loi binomiale.svg
Un arbre de probabilité permet d'illustrer les résultats des différentes étapes d'une expérience aléatoire. Dans cet exemple, à chaque étape, il y a deux résultats possibles, succès avec probabilité , échec avec probabilité . La variable désigne le nombre de succès. On retrouve une loi binomiale.


Une personnalité au hasard
Index thématique

Applications

Voir aussi
Wikimedia-logo.svg
Lien vers Wikimedia Commons

Wikimedia Commons
(Ressources multimédia)
Les images


Lien vers Wiktionnaire

Wiktionnaire
(Dictionnaire universel)
Probabilité
Statistique

Lien vers Wikiversité

Wikiversité
(Ressources pédagogiques)
Probabilités et Statistique

Lien vers Wikilivres

Wikilivres
(Textes et manuels)
Statistique

Lien vers Wikiquote

Wikiquote
(Recueil de citations)
Hasard

Ce portail a été reconnu comme bon portail le 14 juin 2012 (comparer avec la version actuelle).
Pour toute information complémentaire, consulter sa page de discussion et le vote l’ayant promu.