Anneau ℤ/n

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, et plus particulièrement en algèbre, ℤ/n est un cas particulier d'anneau commutatif, correspondant au calcul modulaire sur les restes des entiers dans la division par n.

Tout anneau unitaire contient un sous-anneau isomorphe soit à ℤ/nℤ soit à l'anneau ℤ des entiers.

Cet anneau joue un rôle particulier en arithmétique, il est en effet l'outil de base de l'arithmétique modulaire.

L'article « Congruence sur les entiers » traite le même sujet avec une approche plus didactique et moins exhaustive, tandis que l'article « Arithmétique modulaire » traite de l'histoire de ce concept, des outils utilisés ainsi que de ses applications.

Construction de ℤ/n[modifier | modifier le code]

Idéaux de ℤ[modifier | modifier le code]

Article détaillé : Idéal.

La division euclidienne dans ℤ montre que cet ensemble est un anneau euclidien, en conséquence ℤ est un anneau principal. Cela signifie que pour tout idéal I de ℤ, il existe un entier n tel que I est égal à nℤ. Comme les idéaux nℤ et -nℤ sont confondus, il est toujours possible de choisir n positif. Dans toute la suite de l'article, n désigne un entier positif.

Anneau quotient[modifier | modifier le code]

Article détaillé : Anneau quotient.

La construction de ℤ/nℤ correspond à la construction générale des anneaux quotients. Ici la relation d'équivalence correspond à la classique congruence sur les entiers. Un élément de ℤ/nℤ est la classe des éléments ayant tous le même reste par la division euclidienne par n.

Un élément est identifié par un membre de sa classe, souvent l'entier compris entre 0 et n - 1. Il est parfois noté ou , ainsi dans ℤ/6ℤ, 2 désigne la classe contenant les éléments 2, 8, 14 etc. Quand il n'existe pas d'ambigüité, on utilise simplement la lettre a.

Les éléments de ℤ/nℤ sont appelés classes modulo n ou résidus.

L'anneau ℤ/nℤ est parfois noté ℤn, lorsque le contexte élimine l'ambiguïté avec l'anneau ℤn des entiers n-adiques.

Propriétés[modifier | modifier le code]

Propriétés élémentaires[modifier | modifier le code]

La théorie des anneaux permet directement de démontrer certaines propriétés de l'anneau.

  • L'anneau/nest unitaire.
    C'est une conséquence directe du fait que ℤ l'est.
  • Les idéaux de l'anneau/nsont principaux.
    C'est une conséquence directe du fait que tous les idéaux de ℤ le sont. En pratique et comme pour ℤ, tous les sous-groupes additifs et tous les sous-anneaux sont aussi des idéaux principaux. Si m est un diviseur de n alors il existe un unique ideal de ℤ/nℤ isomorphe à ℤ/mℤ, ce résultat est une conséquence directe de la troisième proposition du paragraphe Théorème fondamental de l'article « Groupe cyclique ».

Si n est non nul et non premier, alors l'anneau ℤ/nℤ n'est pas intègre, ce n'est donc pas un anneau principal. En revanche, on verra plus loin que lorsque n est premier, ℤ/nℤ est un corps (donc principal).

Structure additive[modifier | modifier le code]

Article détaillé : Groupe cyclique.

La structure du groupe (ℤ/nℤ,+) est celle d'un groupe cyclique (ou : monogène), c'est-à-dire engendré par un seul élément (si n est égal à 0 on obtient un groupe isomorphe à ℤ ; si n est différent de 0, alors le groupe est fini). La classe de 1 est en effet un générateur du groupe. Ce n'est d'ailleurs pas le seul :

Ce sont par conséquent (cf. article « Inverse modulaire ») les classes d'entiers premiers avec n.

La caractérisation ci-dessus des générateurs résulte du fait que dans tout anneau unitaire cyclique – c'est-à-dire dont le groupe additif est cyclique – les générateurs de ce groupe sont les inversibles de l'anneau. Comme 1 en fait partie, ceci prouve de plus que :

Théorème chinois[modifier | modifier le code]

Article détaillé : Théorème des restes chinois.

La logique du théorème chinois s'applique encore, ainsi les propriétés du paragraphe Théorème chinois de l'article « Groupe cyclique ». Il suffit pour les vérifier de valider que le morphisme de groupes utilisé est aussi un morphisme d'anneaux.

Note : L'anneau produit ne contient pas d'élément d'ordre supérieur au ppcm de u et de v. Donc si u et v ne sont pas premiers entre eux, cet anneau n'est pas isomorphe à l'anneau ℤ/uvℤ.

Cette proposition entraîne, pour tout n > 0, une décomposition unique de ℤ/nℤ en facteurs premiers. Le théorème fondamental de l'arithmétique montre que n se décompose de la manière unique suivante :

où (pi) est une famille de k nombres premiers tous distincts et αi des entiers supérieurs ou égaux à un. Les puissances des nombres premiers du produit sont tous premiers entre eux. Une simple récurrence montre :

  • /nse décompose de manière unique en un produit d'anneaux quotients dedont chacun a pour cardinal une puissance d'un nombre premier.

Cas où ℤ/nℤ est un corps[modifier | modifier le code]

Articles détaillés : Corps commutatif et Corps fini.

En effet, la classe d'un entier m est inversible dans ℤ/nℤ si et seulement si m est premier avec n (voir l'article « Inverse modulaire »). Dans ℤ/nℤ avec n ≠ 1, la classe nulle est donc la seule classe non inversible si et seulement si les multiples de n sont les seuls entiers non premiers avec n, c'est-à-dire si et seulement si n est premier.

Caractéristique d'un anneau[modifier | modifier le code]

Article détaillé : Caractéristique d'un anneau.

Soit A un anneau unitaire; il existe un unique morphisme d'anneaux φ de ℤ dans A qui à 1 associe 1A. Soit n l'entier positif tel que le noyau de φ soit égal à nℤ. Le premier théorème d'isomorphisme montre qu'il existe un sous-anneau de A isomorphe à ℤ/nℤ, à savoir le sous-anneau Im φ.

  • L'entier n est appelé caractéristique de l'anneau A.

Ainsi, tout anneau unitaire contient un sous-anneau isomorphe soit à ℤ dans le cas où n est égal à 0, soit à ℤ/nℤ. C'est une des raisons qui rend cette famille d'anneaux intéressante.

Groupe des unités[modifier | modifier le code]

Article détaillé : Inverse modulaire.

Le groupe des unités d'un anneau est le groupe multiplicatif formé des éléments inversibles. De tels éléments sont appelés unités. Dans ℤ/nℤ pour n > 0, les unités forment un groupe abélien fini (donc un produit de groupes cycliques, d'après le théorème de Kronecker) ; de plus, comme dans tout anneau fini, les unités sont exactement les éléments réguliers. Dans ℤ/0ℤ = ℤ, les seules unités sont 1 et –1, ce qui est un cas particulier de la proposition suivante (démontrée dans l'article détaillé).

  • La classe dans ℤ/nd'un entier m est une unité si et seulement si m est premier avec n.

Par conséquent :

  • Pour n > 0, l'ordre du groupe des unités de ℤ/nest égal à φ(n), φ désigne la fonction indicatrice d'Euler.

Par ailleurs, puisque les unités de l'anneau ℤ/nℤ sont les générateurs de son groupe additif :

On suppose dans la suite n > 1.

Cas où n est premier[modifier | modifier le code]

Dans le cas où n est premier c'est-à-dire si l'anneau est un corps, le groupe des inversibles est d'ordre n – 1. Sa structure est simple :

Si n est un nombre premier, le groupe des inversibles du corps ℤ/nℤ est cyclique.

En effet, le groupe multiplicatif de tout corps fini est cyclique (voir l'article détaillé ; la preuve repose sur deux propriétés : l'exposant d'un groupe abélien fini est égal à l'ordre d'au moins un élément du groupe, et dans un corps commutatif, le nombre de racines d'un polynôme non nul est au plus égal à son degré).

Cas où n n'est pas premier[modifier | modifier le code]

Étudions d'abord le cas où n est de la forme pr, pour un nombre premier p et un entier r ≥ 2 (le cas r = 1 vient d'être étudié). Le groupe des unités de ℤ/prℤ est alors toujours cyclique, sauf si p = 2 et r ≥ 3. Plus précisément :

  • Si p = 2 (et r ≥ 2), le groupe des inversibles de ℤ/prest le produit direct interne du sous-groupe d'ordre 2 engendré par la classe de –1 et du sous-groupe d'ordre 2r–2 engendré par la classe de 5.
  • Si p ≠ 2, le groupe des inversibles est cyclique.

Le cas général se ramène aux précédents grâce au théorème fondamental de l'arithmétique. En effet, d'après le théorème chinois :

  • Soient n et m deux entiers premiers entre eux non nuls, le groupe des inversibles de ℤ/nmest isomorphe au produit direct des groupes des unités de ℤ/net de ℤ/mℤ.

En particulier, (ℤ/nℤ)× est cyclique si et seulement si n = 4, ou une puissance d'un premier impair, ou le double d'une telle puissance[4].

Notes et références[modifier | modifier le code]

  1. (en) Warren Buck, Cyclic Rings, Master Thesis, 2004.
  2. (en) Cyclic ring de PlanetMath.
  3. Pour plus de détails, voir par exemple ce devoir corrigé de la leçon « Introduction à la théorie des nombres » sur la Wikiversité.
  4. Daniel Perrin, Cours d'algèbre [détail des éditions], p. 84.

Voir aussi[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Serge Lang, Algèbre [détail des éditions]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]