Théorème d'inversion de Lagrange

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 12 janvier 2021 à 17:07 et modifiée en dernier par WikiCleanerBot (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

En mathématiques, le théorème d'inversion de Lagrange fournit le développement en série de certaines fonctions définies implicitement ; la formule d'inversion de Lagrange, connue aussi sous le nom de formule de Lagrange-Bürmann, en est un cas particulier donnant le développement en série de Taylor de la bijection réciproque d'une fonction analytique.

Formule générale

Si z est une fonction de x, de y et d'une fonction f indéfiniment dérivable, telle que

alors pour toute fonction g indéfiniment dérivable, on a

pour y petit, si la série converge (voir plus loin pour la version formelle de cette identité).

Si g est la fonction identité on obtient alors

Cas particuliers

Cas de la bijection réciproque

Si on prend x = 0 et f(z) = zh(z)h est une fonction analytique telle que h(0) = 0 et h'(0) ≠ 0, on obtient la relation y = h(z) et la formule d'inversion de Lagrange permet d'obtenir la série de Taylor de la fonction h−1, à savoir :

les dérivées étant calculées en x = 0.

Plus précisément, soit f une fonction (de variable complexe) analytique au point a telle que f '(a) ≠ 0. On peut alors résoudre l'équation en w, f(w) = z pour z appartenant à un voisinage de f(a), obtenant w = g(z), où g est analytique au point b = f(a). On dit que g est obtenu par inversion de série.

Le développement en série de g est donné par[1]

Cette formule est en fait valable pour des séries formelles, et peut se généraliser de diverses façons : pour des fonctions de plusieurs variables, pour le cas où f '(a) = 0 (l'inverse g étant alors une fonction multivaluée), et pour des extensions à des algèbres d'opérateurs, comme pour l'exponentielle ou le logarithme de matrices.

Ce théorème fut démontré par Lagrange[2] et généralisé par Hans Heinrich Bürmann (en)[3],[4],[5] à la fin du XVIIIe siècle. On peut l'obtenir à l'aide de la théorie (plus tardive) de l'intégrale de contour, mais c'est en réalité un résultat purement formel, dont on peut donner une preuve directe[6].

Formule de Lagrange-Bürmann

Un cas particulier du théorème, utilisé en combinatoire analytique, correspond à f(w) = w/ϕ(w) et ϕ(0) ≠ 0. Prenant a = 0 et b = f(0) = 0, on obtient

ce qui peut aussi s'écrire

[wr] désigne le coefficient de wr dans l'expression qui le suit.

Une généralisation utile de cette formule est connue comme la formule de Lagrange–Bürmann :

,

H peut être une série formelle ou une fonction analytique arbitraire, par exemple H(w) = wk.

Applications

Fonction W de Lambert

La fonction W de Lambert est la fonction W(z) définie par l'équation implicite

Le théorème de Lagrange permet de calculer la série de Taylor de W(z) près de z = 0. Prenant f(w) = w ew et a = b = 0, on remarque que

ce qui donne

Le rayon de convergence de cette série est e–1 (ce qui correspond à la branche principale de la fonction de Lambert).

On peut obtenir une série ayant un plus grand rayon de convergence par la même méthode : la fonction f(z) = W(ez) – 1 vérifie l'équation

Développant z + ln (1 + z) en série et inversant celle-ci, on obtient pour f(z + 1) = W(ez + 1) – 1 :

W(x) peut s'en déduire en substituant ln x – 1 à z dans cette série. Par exemple, prenant z = –1, on trouve W(1) = 0,567143 à 10-6 près.

Combinatoire analytique

Soit Bn le nombre d'arbres binaires (non étiquetés) ayant n nœuds.

Retirer la racine d'un arbre le décompose en deux arbres plus petits ; on en déduit que la fonction génératrice vérifie l'équation fonctionnelle :

Posant C(z) = B(z) – 1, cette équation se réécrit :

On peut donc appliquer le théorème avec ϕ(w) = (w + 1)2 :

On en déduit que Bn est le n-ème nombre de Catalan.

Notes et références

Notes

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Lagrange inversion theorem » (voir la liste des auteurs).

Références

  1. (en) Milton Abramowitz et Irene Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [détail de l’édition] (lire en ligne), chap. 3.6.6. : « Lagrange's Expansion », p. 14
  2. Joseph-Louis Lagrange, « Nouvelle méthode pour résoudre les équations littérales par le moyen des séries », Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, vol. 24,‎ , p. 251–326 (lire en ligne) (soumis en 1768)
  3. Hans Heinrich Bürmann, « Essai de calcul fonctionnaire aux constantes ad-libitum », Institut National de France,‎ soumis en 1796. Pour un résumé de cet article, cf. (de) Bürmann, « Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges », dans C. F. Hindenburg, Archiv der reinen und angewandten Mathematik, vol. 2, Leipzig, Schäferischen Buchhandlung, (lire en ligne), p. 495-499
  4. Hans Heinrich Bürmann, Formules du développement, de retour et d'intégration, soumis à l'Institut National de France. Le manuscrit de Bürmann est conservé dans les archives de l'École nationale des ponts et chaussées à Paris
  5. Lagrange et Legendre, « Rapport sur deux mémoires d'analyse du professeur Burmann », Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques, vol. 2,‎ , p. 13-17 (lire en ligne)
  6. Voir l'article anglais sur les séries formelles

Voir aussi

Article connexe

Formule de Faà di Bruno

Liens externes