Aller au contenu

« Virus de la grippe » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Rédaction.
Rédaction.
Ligne 260 : Ligne 260 :
* A/Brisbane/59/2007 (H1N1).
* A/Brisbane/59/2007 (H1N1).


La souche à l'origine de l'épidémmie de « grippe aviaire » de 2009 est généralement désignée par HPAI H5N1, signifiant ''{{lang|en|Highly Pathogenic Avian Influenza}}''.
Les souches à l'origine de l'épidémmie de « grippe aviaire » de 2006 sont généralement désignées par HPAI H5N1, signifiant ''{{lang|en|Highly Pathogenic Avian Influenza}}''<ref name="10.1007/s11262-007-0188-7">
{{Article
| langue = en
| nom1 = Siamak Zohari, Peter Gyarmati, Peter Thorén, György Czifra, Caroline Bröjer, Sándor Belá et kMikael Berg
| titre = Genetic characterization of the NS gene indicates co-circulation of two sub-lineages of highly pathogenic avian influenza virus of H5N1 subtype in Northern Europe in 2006
| périodique = Virus Genes
| volume = 36
| numéro = 1
| jour =
| mois = février
| année = 2008
| pages = 117-125
| url texte = https://link.springer.com/article/10.1007/s11262-007-0188-7
| consulté le = 20 octobre 2019
| doi = 10.1007/s11262-007-0188-7
| pmid = 18172752
| bibcode =
}}</ref>{{,}}<ref name="10.1186/1743-422X-5-113">
{{Article
| langue = en
| nom1 = István Kiss, Péter Gyarmati, Siamak Zohari, Karin Wilbe Ramsay, Giorgi Metreveli, Elisabeth Weiss, Maria Brytting, Marielle Stivers, Sofia Lindström, Ake Lundkvist, Kirill Nemirov, Peter Thorén, Mikael Berg, György Czifra et Sándor Belák
| titre = Molecular characterization of highly pathogenic H5N1 avian influenza viruses isolated in Sweden in 2006
| périodique = Virology Journal
| volume = 5
| numéro =
| jour = 6
| mois = octobre
| année = 2008
| numéro article = 113
| url texte = https://virologyj.biomedcentral.com/track/pdf/10.1186/1743-422X-5-113
| consulté le = 20 octobre 2019
| doi = 10.1186/1743-422X-5-113
| pmid = 18837987
| pmc = 2569034
}}</ref>.


=== Virus de la grippe B ===
=== Virus de la grippe B ===
Ligne 431 : Ligne 465 :
| pmid = 23408893
| pmid = 23408893
| pmc = 3567177/
| pmc = 3567177/
}}</ref>. Ce type semble avoir divergé des virus de la grippe C il y a plusieurs centaines d'années<ref name="10.1007/s00705-013-1815-3">
}}</ref>. Ce type semble avoir divergé des [[virus de la grippe C]] il y a plusieurs centaines d'années<ref name="10.1007/s00705-013-1815-3">
{{Article
{{Article
| langue = en
| langue = en

Version du 20 octobre 2019 à 20:55

Les virus de la grippe sont un ensemble de quatre espèces de virus à ARN monocaténaire de polarité négative distinguées chacune par un type antigénique particulier : le virus de la grippe A, le virus de la grippe B, le virus de la grippe C et le virus de la grippe D[1]. Parmi ces quatre types antigéniques, le type A est le plus dangereux, le type B présente moins de risques mais reste susceptible de provoquer des épidémies, et le type C n'est généralement associé qu'à des symptômes mineurs. Le type D est moins répandu que les autres et n'est pas connu pour provoquer des infections chez l'homme. Ces quatre virus ont un génome segmenté, à huit segments pour les deux premiers et à sept segments pour les deux derniers. La composition en acides aminés des virus de la grippe C et D est semblable à 50 %, taux semblable à celui observé entre les virus de la grippe A et B ; le taux de divergence entre les virus A et B d'une part et les virus C et D d'autre part est en revanche bien plus élevé[2].

Les antigènes, protéine de matrice (M1) et nucléoprotéine (NP), sont utilisés pour déterminer si un virus de la grippe est de type A, B, C ou D. La protéine M1 est nécessaire pour l'assemblage du virus et la nucléoprotéine intervient dans la transcription et la réplication virale[3],[4].

Des glycoprotéines se trouvent également à la surface de la membrane cellulaire. Les virus de la grippe A et B ont deux glycoprotéines : l'hémagglutinine (HA) et la neuraminidase (NA) ; les virus de la grippe C et D n'ont qu'une glycoprotéine, la glycoprotéine de fusion hémagglutinine-estérase (HEF)[5]. Ces glycoprotéines permettent la fixation et la fusion entre l'enveloppe virale et la membrane cellulaire. La fusion de ces membranes permet aux protéines et au génome du virus d'être libérés dans la cellule hôte, ce qui provoque alors l'infection[6]. Les types C et D sont les seuls virus de la grippe à exprimer une estérase. Cette enzyme est semblable à la neuraminidase produite par les virus de la grippe A et B en ce que ces deux enzymes détruisent les récepteurs des cellules hôtes

Les glycoprotéines peuvent subir des mutations (glissement antigénique) ou un réassortiment dans lesquels une nouvelle hémagglutinine ou une nouvelle neuraminidase sont produites (cassure antigénique). Les virus de la grippe C et D ne peuvent donner lieu qu'à un glissement antigénique, alors que le virus de la grippe A connaît également des cassures antigéniques. Lorsque l'un ou l'autre de ces processus se produit, les anticorps produits par le système immunitaire de l'hôte ne protègent plus contre ces glycoprotéines modifiées. Pour cette raison, ces virus provoquent continuellement des infections.

Types, sous-types et souches

Les quatre types de virus de la grippe correspondent chacun à une espèce de virus au sens de l'ICTV[7]. Chacune de ces espèces est à son tour subdivisée en sous-types, en sérotypes et en souches, dont la virulence et l'infectivité (en) varient sensiblement d'une espèce hôte à une autre.

Types et sous-types de virus de la grippe
Types Hôtes Sous-types
Virus de la grippe A Humains, porcs, oiseaux, chevaux, chauves-souris H1N1, H1N2, H2N2, H3N1, H3N2, H3N8, H5N1, H5N2, H5N3, H5N8, H5N9, H7N1, H7N2, H7N3, H7N4, H7N7, H7N9, H9N2, H10N7
Virus de la grippe B Humains, phoques Victoria, Yamagata
Virus de la grippe C Humains, porcs, chiens
Virus de la grippe D Porcs, bovins

Virus de la grippe A

Les virus de la grippe A sont classés en fonction des glycoprotéines de leur enveloppe virale, l'hémagglutinine et la neuraminidase, ce qui identifiée des sous-types notés HxNy, où H identifie l'hémagglutinine et N identifie la neuraminidase, avec x variant de 1 à 18 et y variant de 1 à 11. Ce sont les plus virulents de virus de la grippe, le suivants ayant été observés chez les humains :

Au sein de ces sous-types, on distingue également des souches et des variantes, identifiées selon une nomenclature indiquant respectivement le type, l'origine géographique, le numéro de la souche et l'année d'identification, par exemple :

  • A/Fujian/411/2002 (H3N2)
  • A/Brisbane/59/2007 (H1N1).

Les souches à l'origine de l'épidémmie de « grippe aviaire » de 2006 sont généralement désignées par HPAI H5N1, signifiant Highly Pathogenic Avian Influenza[14],[15].

Virus de la grippe B

Le virus de la grippe B est preque exclusivement humain, et moins répandu que le virus de la grippe A. Le seul hôte non humain connu pour héberger ce virus est le phoque[16]. Le virus de la grippe B mute deux à trois fois moins vite que celui de type A[17] et présente donc une variabilité génétique plus faible, avec un seul sérotype[18]. Pour cette raison, l'immunité contre les virus de la grippe B est généralement atteinte à un âge assez jeune. Le taux de mutation n'est cependant pas nul, et deux sous-types de virus de la grippe B sont clairement identifiés, appelés Victoria et Yamagata[19], de sorte que l'immunité ne peut être totale ni permanente. Néanmoins, l'absence d'hôtes non humains écarte la possibilité de l'émergence d'une pandémie à virus de grippe B[20].

Virus de la grippe C

Le virus de la grippe C infecte les humains et les porcs, et est susceptible de povoquer des affections sévères ainsi que des épidémies localisées[21]. Ce type de virus de la grippe est cependant moins courant que les autres et semble provoquer essentiellement des affections bénignes chez l'enfant[22],[23].

Virus de la grippe D

Les premiers virus de la grippe D ont été isolés en 2011[24]. Ce type semble avoir divergé des virus de la grippe C il y a plusieurs centaines d'années[25]. On en connaît au moins deux souches[26]. Il semble infecter avant tout les bovins, mais a également été observé chez le porc.

Génome et structure

Les virus de la grippe appartiennent à l'ordre des Articulavirales, de sorte qu'ils présentent un génome segmenté, c'est-à-dire divisé en molécules d'acides nucléiques distinctes, en l'occurrence de sept à huit segments d'ARN monocaténaire de polarité négative. La longueur totale de ce génome est comprise entre 12 000 et 15 000 nucléotides, avec, par exemple pour le virus de la grippe A (H1N1), une distribution du type :

Segments du virus de la grippe A[27]
Segment d'ARN Protéine(s) Nucléotides Acides aminés
PB1 Polymérase basique 1 2300 à 2500 757 + 87 (F2)
PB2 Polymérase basique 2 2300 à 2500 759
PA Polymérase acide 2200 à 2300 716
HA Hémagglutinine 1700 à 1800 550
NP Nucléoprotéine 1500 à 1600 498
NA Neuraminidase 1400 à 1500 454
M Protéines membranaires 1000 à 1100 252 + 97
NS Protéines non structurelles 800 à 900 230 + 121

Parmi les segments ci-dessus, les deux plus importants sont PB1 et HA. PB1 donne une ARN polymérase ARN-dépendante essentielle à la virulence du virus, tandis que HA donne l'antigène glycoprotéique de surface (l'hémagglutinine) déterminant sa transmissibilité.

La séquence du génome présente des séquences terminales répétées à chaque extrémité. Les séquences répétées à l'extrémité 5' ont une longueur de 12 ou 13 nucléotides, celles de l'extrémité 3' ont une longueur de 9 à 11 nucléotides. Le virus de la grippe A produit une protéine PB1-F2 à partir d'un cadre de lecture ouvert alternatif du segment PB1, tandis que les segments M et NS produisent deux protéines chacun, notées M1, M2, NS1 et NS2, par épissage alternatif[27].

Les virions du virus de la grippe A ont un diamètre de 80 à 120 nm et forment généralement un ensemble de particules à la fois ellipsoïdales, bacilliformes et filamenteuses[28],[29],[30]. Leur génome a une longueur totale de 13,5 kilobases distribuées sur huit segments d'ARN monocaténaire de polarité négative qui codent 11 protéines, appelées HA, NA, NP, M1, M2, NS1, NEP, PA, PB1, PB1-F2 et PB2[31]. L'hémagglutinine HA et la neuraminidase NA sont les mieux caractérisées d'entre elles. Ce sont de grosses glycoprotéines situées sur la surface des virions. La neuraminidase est une enzyme intervenant dans le bourgeonnement des virions nouvellement formés dans les cellules infectées, tandis que l'hémagglutinine est une lectine intervenant dans la liaison du virus à la cellule hôte et dans l'injection du génome viral dans cette dernière[32]. L'hémagglutinine et la neuraminidase sont les cibles des antiviraux[33]. Ces protéines sont des antigènes reconnus par les anticorps de l'organisme[34].

Notes et références

  1. (en) « Types of Influenza Viruses », CDC (consulté le ).
  2. (en) Shuo Su Jiangsu, Xinliang Fu, Gairu Li, Fiona Kerlin et Michael Veit, « Novel Influenza D virus: Epidemiology, pathology, evolution and biological characteristics », Virulence, vol. 8, no 8,‎ , p. 1580-1591 (PMID 28812422, PMCID 5810478, DOI 10.1080/21505594.2017.1365216, lire en ligne)
  3. (en) Ayub Ali, Roy T. Avalos, Evgeni Ponimaskin et Debi P. Nayak, « Influenza Virus Assembly: Effect of Influenza Virus Glycoproteins on the Membrane Association of M1 Protein », Journal of Virology, vol. 74, no 18,‎ , p. 8709-8719 (PMID 10954572, PMCID 116382, DOI 10.1128/JVI.74.18.8709-8719.2000, lire en ligne)
  4. (en) Agustín Portela et Paul Digard, « The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication », Journal of General Virology, vol. 83, no 4,‎ , p. 723-734 (PMID 11907320, DOI 10.1099/0022-1317-83-4-723, lire en ligne)
  5. (en) Qinshan Gao, Edward W. A. Brydon et Peter Palese, « A Seven-Segmented Influenza A Virus Expressing the Influenza C Virus Glycoprotein HEF », Journal of Virology, vol. 82, no 13,‎ , p. 6419-6426 (PMID 18448539, PMCID 2447078, DOI 10.1128/JVI.00514-08, lire en ligne)
  6. (en) W. Weissenhorn, A. Dessen, L. J. Calder, S. C. Harrison, J. J. Skehel et D. C. Wiley, « Structural basis for membrane fusion by enveloped viruses », Molecular Membrane Biology, vol. 16, no 1,‎ , p. 3-9 (PMID 10332732, DOI 10.1080/096876899294706, lire en ligne)
  7. (en) « Virus Taxonomy: 2018b Release », ICTV, (consulté le ).
  8. (en) Taia T. Wang et Peter Palese, « Unraveling the Mystery of Swine Influenza Virus », Cell, vol. 137, no 6,‎ , p. 983-985 (PMID 19524497, DOI 10.1016/j.cell.2009.05.032, lire en ligne)
  9. (en) J. K. Taubenberger et D. M. Morens, « Pandemic influenza – including a risk assessment of H5N1 », Revue Scientifique et Technique - Office International des Épizooties, vol. 28, no 1,‎ , p. 187-202 (PMID 19618626, PMCID 2720801, lire en ligne)
  10. (en) Ron A. M. Fouchier, Peter M. Schneeberger, Frans W. Rozendaal, Jan M. Broekman, Stiena A. G. Kemink, Vincent Munster, Thijs Kuiken, Guus F. Rimmelzwaan, Martin Schutten, Gerard J. J. van Doornum, Guus Koch, Arnold Bosman, Marion Koopmans et Albert D. M. E. Osterhaus, « Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome », Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no 5,‎ , p. 1356-1361 (PMID 14745020, PMCID 337057, DOI 10.1073/pnas.0308352100, Bibcode 2004PNAS..101.1356F, lire en ligne)
  11. (en) « Protecting Poultry Workers from Avian Influenza (Bird Flu) », NIOSH, (DOI 10.26616/NIOSHPUB2008128, consulté le ).
  12. (en) P. F. Wright, G. Neumann et Y. Kawaoka, « 41-Orthomyxoviruses », revu par D. M. Knipe et P. M. Howley, Fields Virology, 1, 6e édition, Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphie, 2013, p. 1201. (ISBN 978-1-4511-0563-6)
  13. (en) Alain-Jacques Valleron, Anne Cori, Sophie Valtat, Sofia Meurisse, Fabrice Carrat et Pierre-Yves Boëlle, « Transmissibility and geographic spread of the 1889 influenza pandemic », Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no 19,‎ , p. 8778-8781 (PMID 20421481, PMCID 2889325, DOI 10.1073/pnas.1000886107, JSTOR 25681493, Bibcode 2010PNAS..107.8778V, lire en ligne)
  14. (en) Siamak Zohari, Peter Gyarmati, Peter Thorén, György Czifra, Caroline Bröjer, Sándor Belá et kMikael Berg, « Genetic characterization of the NS gene indicates co-circulation of two sub-lineages of highly pathogenic avian influenza virus of H5N1 subtype in Northern Europe in 2006 », Virus Genes, vol. 36, no 1,‎ , p. 117-125 (PMID 18172752, DOI 10.1007/s11262-007-0188-7, lire en ligne)
  15. (en) István Kiss, Péter Gyarmati, Siamak Zohari, Karin Wilbe Ramsay, Giorgi Metreveli, Elisabeth Weiss, Maria Brytting, Marielle Stivers, Sofia Lindström, Ake Lundkvist, Kirill Nemirov, Peter Thorén, Mikael Berg, György Czifra et Sándor Belák, « Molecular characterization of highly pathogenic H5N1 avian influenza viruses isolated in Sweden in 2006 », Virology Journal, vol. 5,‎ , article no 113 (PMID 18837987, PMCID 2569034, DOI 10.1186/1743-422X-5-113, lire en ligne)
  16. (en) A. D. M. E. Osterhaus, G. F. Rimmelzwaan, B. E. E. Martina, T. M. Bestebroer et R. A. M. Fouchier, « Influenza B Virus in Seals », Science, vol. 288, no 5468,‎ , p. 1051-1053 (PMID 10807575, DOI 10.1126/science.288.5468.1051, Bibcode 2000Sci...288.1051O, lire en ligne)
  17. (en) Eri Nobusawa et Katsuhiko Sato, « Comparison of the Mutation Rates of Human Influenza A and B Viruses », Journal of Virology, vol. 80, no 7,‎ , p. 3675-3678 (PMID 16537638, PMCID 1440390, DOI 10.1128/JVI.80.7.3675-3678.2006, lire en ligne)
  18. (en) Alan J. Hay, Victoria Gregory, Alan R. Douglas et Yi Pu Lin, « The evolution of human influenza viruses », Philosophical Transactions of the Royal Society B, vol. 356, no 1416,‎ , p. 1861-1870 (PMID 11779385, PMCID 1088562, DOI 10.1098/rstb.2001.0999, lire en ligne)
  19. (en) Barbara Biere, Bettina Bauer et Brunhilde Schweiger, « Differentiation of Influenza B Virus Lineages Yamagata and Victoria by Real-Time PCR », Journal of Microbial Microbiology, vol. 48, no 4,‎ , p. 1425-1427 (PMID 20107085, PMCID 2849545, DOI 10.1128/JCM.02116-09, lire en ligne)
  20. (en) Maria C. Zambon, « Epidemiology and pathogenesis of influenza », Journal of Antimicrobial Chemotherapy, vol. 44, no 2,‎ , p. 3-9 (PMID 10877456, DOI 10.1093/jac/44.suppl_2.3, lire en ligne)
  21. (en) Y. Matsuzaki, K. Sugawara, K. Mizuta, E. Tsuchiya, Y. Muraki, S. Hongo, H. Suzuki et K. Nakamura, « Antigenic and Genetic Characterization of Influenza C Viruses Which Caused Two Outbreaks in Yamagata City, Japan, in 1996 and 1998 », Journal of Clinical Microbiology, vol. 40, no 2,‎ , p. 422-429 (PMID 11825952, PMCID 153379, DOI 10.1128/JCM.40.2.422-429.2002, lire en ligne)
  22. (en) Yoko Matsuzaki, Noriko Katsushima, Yukio Nagai, Makoto Shoji, Tsutomu Itagaki, Michiyo Sakamoto, Setsuko Kitaoka, Katsumi Mizuta et Hidekazu Nishimura, « Clinical Features of Influenza C Virus Infection in Children », The Journal of Infectious Diseases, vol. 193, no 9,‎ , p. 1229-1235 (PMID 16586359, DOI 10.1086/502973, JSTOR 30086532, lire en ligne)
  23. (en) Susumu Katagiri, Akiko Ohizumi et Morio Homma, « An Outbreak of Type C Influenza in a Children's Home », The Journal of Infectious Diseases, vol. 148, no 1,‎ , p. 51-56 (PMID 6309999, DOI 10.1093/infdis/148.1.51, JSTOR 30129337, lire en ligne)
  24. (en) Ben M. Hause, Mariette Ducatez, Emily A. Collin, Zhiguang Ran, Runxia Liu, Zizhang Sheng, Anibal Armien, Bryan Kaplan, Suvobrata Chakravarty, Adam D. Hoppe, Richard J. Webby, Randy R. Simonson et Feng Li, « Isolation of a Novel Swine Influenza Virus from Oklahoma in 2011 Which Is Distantly Related to Human Influenza C Viruses », PLoS Pathogens, vol. 9, no 2,‎ , article no e1003176 (PMID 23408893, PMCID 3567177/, DOI 10.1371/journal.ppat.1003176, lire en ligne)
  25. (en) Zizhang Sheng, Zhiguang Ran, Dan Wang, Adam D. Hoppe, Randy Simonson, Suvobrata Chakravarty, Ben M. Hause et Feng Li, « Genomic and evolutionary characterization of a novel influenza-C-like virus from swine », Archives of Virology, vol. 159, no 2,‎ , p. 249-255 (PMID 23942954, PMCID 5714291, DOI 10.1007/s00705-013-1815-3, lire en ligne)
  26. (en) Emily A. Collin, Zizhang Sheng, Yuekun Lang, Wenjun Ma, Ben M. Hause et Feng Li, « Cocirculation of Two Distinct Genetic and Antigenic Lineages of Proposed Influenza D Virus in Cattle », Journal of Virology, vol. 89, no 2,‎ , p. 1036-1042 (PMID 25355894, PMCID 4300623, DOI 10.1128/JVI.02718-14, lire en ligne)
  27. a et b (en) Nicole M. Bouvier et Peter Palese, « The biology of influenza viruses », Vaccine, vol. 24, no 4,‎ , D49-D53 (PMID 19230160, PMCID 3074182, DOI 10.1016/j.vaccine.2008.07.039, lire en ligne)
  28. (en) Matthew D. Badham et Jeremy S. Rossman, « Filamentous Influenza Viruses », Current Clinical Microbiology Reports, vol. 3, no 3,‎ , p. 155-161 (PMID 28042529, PMCID 5198887, DOI 10.1007/s40588-016-0041-7, lire en ligne)
  29. (en) Takeshi Noda, « Native morphology of influenza virions », Frontiers in Microbiology, vol. 2,‎ , article no 269 (PMID 22291683, PMCID 3249889, DOI 10.3389/fmicb.2011.00269, lire en ligne)
  30. (en) Bernadeta Dadonaite, Swetha Vijayakrishnan, Ervin Fodor, David Bhella et Edward C. Hutchinson, « Filamentous influenza viruses », Journal of General Virology, vol. 97, no 8,‎ , p. 1755-1764 (PMID 27365089, DOI 10.1099/jgv.0.000535, Bibcode 5935222, lire en ligne)
  31. (en) Elodie Ghedin, Naomi A. Sengamalay, Martin Shumway, Jennifer Zaborsky, Tamara Feldblyum, Vik Subbu, David J. Spiro, Jeff Sitz, Hean Koo, Pavel Bolotov, Dmitry Dernovoy, Tatiana Tatusova, Yiming Bao, Kirsten St George, Jill Taylor, David J. Lipman, Claire M. Fraser, Jeffery K. Taubenberger et Steven L. Salzberg, « Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution », Nature, vol. 437, no 7062,‎ , p. 1162-1166 (PMID 16208317, DOI 10.1038/nature04239, Bibcode 2005Natur.437.1162G, lire en ligne)
  32. (en) Yasuo Suzuki, « Sialobiology of Influenza: Molecular Mechanism of Host Range Variation of Influenza Viruses », Biological and Pharmaceutical Bulletin, vol. 28, no 3,‎ , p. 399-408 (PMID 15744059, DOI 10.1248/bpb.28.399, lire en ligne)
  33. (en) J. C. Wilson et M. von Itzstein ., « Recent Strategies in the Search for New Anti-Influenza Therapies », Current Drug Targets, vol. 4, no 5,‎ , p. 389-408 (PMID 12816348, DOI 10.2174/1389450033491019, lire en ligne)
  34. (en) Maurice R. Hilleman, « Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control », Vaccine, vol. 20, nos 25-26,‎ , p. 3068-3087 (PMID 12163258, DOI 10.1016/S0264-410X(02)00254-2, lire en ligne)