Perceptron

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant l’informatique
Cet article est une ébauche concernant l’informatique.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Le perceptron a été inventé en 1957 par Frank Rosenblatt au laboratoire d'aéronautique de l'université Cornell. C'est un modèle inspiré des théories cognitives de Friedrich Hayek et de Donald Hebb.

Définition[modifier | modifier le code]

Schéma d'un perceptron à n entrées.
Les entrées i1 à in sont multipliées avec les poids W1 à Wn, puis sommées, avant qu'une fonction d'activation soit appliquée.

Le perceptron peut être vu comme le type de réseau de neurones le plus simple. C'est un classifieur linéaire. Ce type de réseau neuronal ne contient aucun cycle (en anglais feedforward neural network). Dans sa version simplifiée, le perceptron est mono-couche et n'a qu'une seule sortie à laquelle toutes les entrées sont connectées. Les entrées et la sortie sont booléennes.

Le potentiel post-synaptique biaisé est représenté par Z = \sum W_i X_i - \theta. Ici, θ définit le seuil (ou biais) à dépasser pour que la sortie Y soit à 1, et W_i est le poids de l'entrée X_i.

La fonction d'activation est la fonction de Heaviside (la fonction signe est parfois utilisée)

Y = H(Z)=\left\{\begin{matrix} 0 & \mathrm{si} & Z < 0 \\ 1 & \mathrm{si} & Z \ge 0\end{matrix}\right.

Règle de Hebb[modifier | modifier le code]

La règle de Hebb établie par Donald Hebb est une règle d'apprentissage des réseaux de neurones artificiels dans le contexte de l'étude d'assemblées de neurones.

Cette règle suggère que lorsque deux neurones sont excités conjointement, il se crée ou renforce un lien les unissant.

Dans le cas d'un neurone artificiel seul utilisant la fonction signe comme fonction d'activation cela signifie que :

W'_i = W_i + \alpha (Y . X_i)

W'_i représente le poids i corrigé et \alpha représente le pas d'apprentissage.

Cette règle n'est malheureusement pas applicable dans certains cas bien que la solution existe.

Règle d'apprentissage du perceptron[modifier | modifier le code]

Le perceptron de Frank Rosenblatt est très proche de la règle de Hebb, la grande différence étant qu'il tient compte de l'erreur observée en sortie.

W'_i = W_i + \alpha (Y_t - Y)  X_i

Y_t représente la sortie attendue, W'_i le poids i corrigé et \alpha le pas d'apprentissage.

Notes et références[modifier | modifier le code]

Voir aussi[modifier | modifier le code]

Le perceptron : Algorithme et théorèmes

Réseau neuronal artificiel

Bibliographie[modifier | modifier le code]

  • F. Rosenblatt (1958), "The perceptron: a probabilistic model for information storage and organization in the brain",
- repris dans J.A. Anderson & E. Rosenfeld (1988), Neurocomputing. Foundations of Research, MIT Press