Courant de déplacement

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Ce modèle est-il pertinent ? Cliquez pour en voir d'autres.
Cet article ne cite pas suffisamment ses sources (septembre 2012).

Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » (modifier l'article, comment ajouter mes sources ?).

En électromagnétisme, le courant de déplacement est un terme introduit par Maxwell pour étendre aux régimes variables dans le temps le théorème d'Ampère valide en magnétostatique.

Formulation[modifier | modifier le code]

En magnétostatique, le théorème d'Ampère lie la circulation du champ magnétique sur un contour fermé, et le courant qui traverse toute surface s'appuyant sur ce contour :

Sous forme locale, il s'écrit en termes du vecteur densité de courant  :


Maxwell a complété l'équation locale précédente de la façon suivante :

On introduit le courant de déplacement de Maxwell :


On a alors :

On obtient finalement l'équation

La forme intégrale devient :

Intérêt[modifier | modifier le code]

Le premier intérêt de cette équation est que les équations de Maxwell deviennent compatibles avec l'équation de conservation de la charge. Par la suite, ce terme apporte une certaine symétrie dans les équations qui permettra d'établir une équation de d'Alembert, montrant que les champs électrique et magnétique propagent ainsi ce qu'on appellera onde électromagnétique.

Annexes[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • (en) David Griffiths, Introduction to Electrodynamics, Prentice Hall, , 3e éd., 576 p. (ISBN 013805326X)

Liens[modifier | modifier le code]