Modélisation tridimensionnelle

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Rendu laissant apparaître la structure polygonale utilisée pour la synthèse de l'image.

La modélisation tridimensionnelle est l'étape en infographie tridimensionnelle qui consiste à créer, dans un logiciel de modélisation 3D, un objet en trois dimensions, par ajout, soustraction et modifications de ses constituants.

Modélisation polygonale[modifier | modifier le code]

Modélisation polygonale : le modèle est assimilé à un ensemble de polygones : ce polyèdre est donc décrit par la liste des sommets et des arêtes. Si les polygones sont orientés, on pourra différencier l'extérieur et l'intérieur du modèle. Si l'on veut lever l'ambiguïté apportée par des polygones non plans, on utilisera uniquement des triangles : cette triangulation peut être forcée par le modeleur.

Sans effet de lissage, l'objet apparaîtra anguleux si la définition en facettes est faible. En général, le lissage de Gouraud, réalisé par la carte graphique 3D, est suffisant pour donner un aspect plus lisse au modèle.

La modélisation polygonale se sert d'outils de base identiques sur tous les logiciels 3D, ainsi que certains outils spécifiques aux logiciels génériques, aux logiciels spécialisés et aux plug-ins et scripts.

Parmi ces outils, les plus répandus sont l'extrusion, la coupe (cut, split…), la soudure/rétractation (weld/collapse) et la révolution.

L'extrusion consiste à surélever une ou plusieurs faces (adjacentes ou non) ou un profil 2D le long d'une trajectoire et de créer les faces venant combler le vide occasionné par le déplacement de l'élément de départ. Par exemple, extruder un cercle donne un cylindre ouvert ou un tuyau qui suit la trajectoire.

La coupe consiste à créer des arêtes (edges) sur un maillage, ainsi que les points correspondants aux intersections des arêtes déjà existantes et celles nouvellement créées. On peut ainsi affiner un modèle, en ajoutant des détails sur certaines régions, notamment par l'ajout de boucles d'arêtes (edgeloops) extrêmement utilisées en modélisation organique.

La soudure/rétractation consiste à souder les sommets (vertices) entre eux, pour simplifier un maillage, boucher des trous ou faire converger des arêtes.

La révolution consiste à faire tourner un profil 2D autour d'un axe 3D : on obtient ainsi un volume de révolution.

C'est la technique majoritairement utilisée dans le jeu vidéo, et le cinéma d'animation. La modélisation polygonale induit une marge d'erreur de proportions et de dimensions le plus souvent invisible à l'œil nu. Dans le cinéma d'animation, les modèles 3D organiques sont le plus souvent lissés. Le lissage consiste à subdiviser un maillage (une itération correspond à une subdivision de chaque arête, soit dans le cas de face à quatre côtés, une subdivision en quatre faces) et arrondir les faces obtenues selon différents algorithmes, afin de gommer l'effet anguleux des modèles obtenus par modélisation polygonale.

Modélisation par courbes (NURBS)[modifier | modifier le code]

La modélisation par NURBS (Non uniform rational basic spline/Spline basique rationnelle non uniforme) consiste en un réseau de courbes créé grâce à des points de contrôles (control vertices). L'interpolation des courbes entre ces points peut se faire automatiquement selon un algorithme NURBS, par la manipulations de tangentes de courbe de Bézier, ou encore par modification des paramètres d'interpolation.

La modélisation par courbe se base sur un maillage adaptatif, conçu pour adapter ses subdivisions à la complexité des courbes dans une région donnée. Une surface parfaitement plane aura un nombre de subdivision très faible ou nul. C'est la technique de modélisation la plus précise. C'est la raison pour laquelle elle est massivement utilisée en architecture et en CAO industrielle, lorsque le souci de précision prime (notamment lorsque les modèles 3D servent de référence pour les machines outils).

Modélisation par subdivision de surface[modifier | modifier le code]

Article détaillé : Surface de subdivision.

Cette méthode regroupe un peu des deux méthodes classiques (polygonale et NURBS). Elle consiste à accélérer le processus grâce à la subdivision automatique d'une partie de la surface. Ceci permet d'ajouter des détails à certains endroits uniquement, sans se soucier du nombre de faces comprises sur la globalité de l'objet.

Elle se rapproche de la modélisation polygonale par les techniques employées lors de la création de la forme, et de la modélisation par NURBS en ce qui concerne le rendu de la surface, c’est-à-dire son arrondi.

Elle est présente dans de nombreux logiciels professionnels (Maya, 3ds Max, Lightwave, Softimage, Modo…).

Modélisation par surfaces implicites[modifier | modifier le code]

Article détaillé : Surface implicite.

Modélisation par géométries[modifier | modifier le code]

Modélisation volumique[modifier | modifier le code]

Article détaillé : Voxel.

Quelques logiciels de modélisation tridimensionnelle[modifier | modifier le code]

Modélisation 3D de la Grande Mosquée de Kairouan (en Tunisie)

Références[modifier | modifier le code]

  1. (fr) Le site de [1]

Voir aussi[modifier | modifier le code]

Il existe des bibliothèques de composants CAO 3D qui aide à la modélisation.

Ex : TraceParts publie TracePartsOnline.net, une bibliothèque contenant des fichiers CAO pour la mécanique et l'électromécanique issus des fabricants de composants du monde entier.

Bibliographie[modifier | modifier le code]

  • Doug Kelly, Animation et modélisation 3D : studio pro, éd. Sybex, 2000.
  • François Goulette, Modélisation 3D automatique : outils de géométrie différentielle, éd. TRANSVALOR Presses des MINES, 1999.
  • Antoine Veyrat, Débutez dans la 3D avec Blender, éd. Le Site du Zéro, janvier 2012, 416 p. (ISBN 978-2-9535278-9-6)

Articles connexes[modifier | modifier le code]

Lien externe[modifier | modifier le code]