« Généalogie génétique » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Ange Gabriel (discuter | contributions)
m v2.04 - Correction syntaxique (Ponctuation avant une référence - Référence en double - Orthographe et typographie)
Lucaliuzzi (discuter | contributions)
Aucun résumé des modifications
Ligne 86 : Ligne 86 :


== Gestion des données ==
== Gestion des données ==
=== Investigation avec la généalogie génétique dans les Etats Unis<ref>{{Article|prénom1=Ellen M.|nom1=Greytak|prénom2=CeCe|nom2=Moore|prénom3=Steven L.|nom3=Armentrout|titre=Genetic genealogy for cold case and active investigations|périodique=Forensic Science International|volume=299|date=2019-06|issn=0379-0738|doi=10.1016/j.forsciint.2019.03.039|lire en ligne=http://dx.doi.org/10.1016/j.forsciint.2019.03.039|consulté le=2022-05-16|pages=103–113}}</ref><ref>{{Article|prénom1=Daniel|nom1=Kling|prénom2=Christopher|nom2=Phillips|prénom3=Debbie|nom3=Kennett|prénom4=Andreas|nom4=Tillmar|titre=Investigative genetic genealogy: Current methods, knowledge and practice|périodique=Forensic Science International: Genetics|volume=52|date=2021-05|issn=1872-4973|doi=10.1016/j.fsigen.2021.102474|lire en ligne=http://dx.doi.org/10.1016/j.fsigen.2021.102474|consulté le=2022-05-16|pages=102474}}</ref><ref>{{Article|prénom1=Ellen M.|nom1=Greytak|prénom2=David H.|nom2=Kaye|prénom3=Bruce|nom3=Budowle|prénom4=CeCe|nom4=Moore|titre=Privacy and genetic genealogy data|périodique=Science|volume=361|numéro=6405|date=2018-08-31|issn=0036-8075|issn2=1095-9203|doi=10.1126/science.aav0330|lire en ligne=http://dx.doi.org/10.1126/science.aav0330|consulté le=2022-05-16|pages=857–857}}</ref> ===
Avec le développement de la technologie, de plus en plus de personnes ont décidé de faire un test ADN. L'augmentation des données disponibles a permis le développement de différentes utilisations de ces informations ; l'une d'entre elles est la recherche en généalogie génétique.
Les données obtenues grâce aux tests ADN ont permis de résoudre certaines affaires non résolues et récentes. Cette utilisation de la généalogie génétique est très récente et a reçu une importance et une attention croissantes depuis 2018, quand avec l'utilisation de la généalogie génétique a été arrêté le [[Golden State Killer]]. L'affaire du Golden State Killer est l'une des plus importantes affaires non résolues des États-Unis d'Amérique. Les meurtres et les crimes ont été commis entre le milieu des années 1970 et le milieu des années 1980. La police n'a jamais vraiment arrêté l'enquête. En 2018, la sortie du livre " I'll Be Gone in the Dark : One Woman's Obsessive Search for the Golden State Killer ", écrit par [[Michelle McNamara]] a relancé l'intérêt pour cette affaire non résolue. Un parent de l'auteur du crime a effectué un test ADN avec [[MyHeritage|Myheritage]]. La police a utilisé la base de données du MyHeritage pour rechercher des correspondances positives avec l'ADN inconnu de l'auteur du crime trouvé sur l'une des scènes de crime. Grâce à cette recherche, la police a pu relier [[Golden State Killer|Joseph James DeAngelo]] à certains des meurtres. DeAngelo a ensuite avoué tous ses crimes pour éviter la peine de mort. Après l'arrestation de DeAngelo, Myeritage et d'autres sociétés DTC (direct-to-costumer) ont modifié leurs conditions et refusé l'accès aux données aux agences d'investigation.

=== Investigation avec la généalogie génétique dans les Etats Unis ===
Les données obtenues grâce aux tests ADN ont permis de résoudre certaines affaires non résolues et récentes. Cette utilisation de la généalogie génétique est très récente et a reçu une importance et une attention croissantes depuis 2018, quand avec l'utilisation de la généalogie génétique, la comparaison des échantillons d'ADN avec la base de données d'une grande entreprise DTC Joseph DaAngelo, également connu sous le nom de Golden State Killer<ref name="q1">{{Article|prénom1=Daniel|nom1=Kling|prénom2=Christopher|nom2=Phillips|prénom3=Debbie|nom3=Kennett|prénom4=Andreas|nom4=Tillmar|titre=Investigative genetic genealogy: Current methods, knowledge and practice|périodique=Forensic Science International: Genetics|volume=52|date=2021-05|issn=1872-4973|doi=10.1016/j.fsigen.2021.102474|lire en ligne=http://dx.doi.org/10.1016/j.fsigen.2021.102474|consulté le=2022-05-01|pages=102474}}</ref>, coupable de multiples meurtres et agressions sexuelles a été arrêté<ref>{{Article|prénom1=Ellen M.|nom1=Greytak|prénom2=CeCe|nom2=Moore|prénom3=Steven L.|nom3=Armentrout|titre=Genetic genealogy for cold case and active investigations|périodique=Forensic Science International|volume=299|date=2019-06|issn=0379-0738|doi=10.1016/j.forsciint.2019.03.039|lire en ligne=http://dx.doi.org/10.1016/j.forsciint.2019.03.039|consulté le=2022-05-01|pages=103–113}}</ref>.


==== Les acteurs pour obtenir des données ====
==== Les acteurs pour obtenir des données ====
Bien que l'ICC ait permis de résoudre plusieurs cas, il ne s'agit pas d'une méthode facilement applicable. En fait, les agences d'investigation n'ont pas la possibilité d'accéder facilement aux données en raison de l'éthique et des politiques de confidentialité des sociétés dtc. De plus, étant donné qu'il s'agit d'un nouveau champ d'investigation, il existe de nombreuses lacunes dans le système juridique. Les sociétés de CPT n'autorisent normalement l'accès qu'à leurs utilisateurs et à des fins liées à la construction d'un arbre généalogique, à la recherche d'ancêtres et/ou à la recherche de parents pour les personnes adoptées. Les sociétés de DTC ne sont pas les seules à posséder des bases de données, il existe des tiers tels que GEDmatch ou DNASolves.
Bien que l'investigation avec la généalogie génétique ait permis de résoudre plusieurs cas, il ne s'agit pas d'une méthode facilement applicable. En fait, les agences d'investigation n'ont pas la possibilité d'accéder facilement aux données en raison de l'éthique et des politiques de confidentialité des sociétés DTC. Les sociétés DTC n'autorisent normalement l'accès qu'à leurs utilisateurs et à des fins liées à la construction d'un arbre généalogique et/ou à la recherche d'ancêtres. Les sociétés de DTC ne sont pas les seules à posséder des bases de données, il existe des tiers tels que [[GEDmatch]] et DNASolves.


===== Les principales compagnies DTCs<ref name="q1">{{Article|prénom1=Daniel|nom1=Kling|prénom2=Christopher|nom2=Phillips|prénom3=Debbie|nom3=Kennett|prénom4=Andreas|nom4=Tillmar|titre=Investigative genetic genealogy: Current methods, knowledge and practice|périodique=Forensic Science International: Genetics|volume=52|date=2021-05|issn=1872-4973|doi=10.1016/j.fsigen.2021.102474|lire en ligne=http://dx.doi.org/10.1016/j.fsigen.2021.102474|consulté le=2022-05-01|pages=102474}}</ref> =====
===== Les principales compagnies DTCs<ref name="q1" /> =====
AncesrtyDNA :


====== AncesrtyDNA : ======
Il s'agit de la plus grande entreprise de DTC et elle possède environ 20 millions de profils SNP. Sa politique n'autorise pas l'accès à la base de données à des fins d'enquête ou d'identification de restes humains. Toutefois, une grande partie de ses données ADN et de ses arbres généalogiques sont utilisés dans le cadre d'enquêtes.
Il s'agit de la plus grande entreprise de DTC et elle possède environ 20 millions de profils SNP ([[Single Nucleotide Polymorphism|Single Nucleotide Polymorphism)]]. Sa politique n'autorise pas l'accès à la base de données à des fins d'enquête ou d'identification de restes humains. Le seul moyen pour les agences d'investigation d'accéder aux données d'AncesryDNA est d'obtenir un mandat de perquisition d'une agence gouvernementale. Pour cette raison une grande partie de ses données ADN et de ses arbres généalogiques sont utilisés dans le cadre d'enquêtes.

23andME :


====== 23andME : ======
En janvier 2021, cette société comptait environ 12 millions d'utilisateurs. Elle n'autorise pas non plus l'accès à sa base de données à des fins d'enquête, car elle affirme que cette utilisation est contraire à ses principes et à son objectif principal.
En janvier 2021, cette société comptait environ 12 millions d'utilisateurs. Elle n'autorise pas non plus l'accès à sa base de données à des fins d'enquête, car elle affirme que cette utilisation est contraire à ses principes et à son objectif principal.


MyHeritage :
====== MyHeritage : ======
Cette société dispose d'environ 4,5 millions de profils SNP et, contrairement aux autres sociétés, permet le transfert gratuit des données provenant de [[23andMe|23andMe,]] AncestryDNA, FTDNA et Living DNA. Leur politique de confidentialité a radicalement changé depuis que leur base de données a involontairement permis l'arrestation du Golden State Killer. Ils interdisent désormais l'utilisation à des fins légales sans une ordonnance du tribunal.


====== FamilyTreeDNA (FTDNA): ======
Cette société dispose d'environ 4,5 millions de profils SNP et, contrairement aux autres sociétés, permet le transfert gratuit des données provenant de 23andMe, AncestryDNA, FTDNA et Living DNA. Leur politique de confidentialité a radicalement changé depuis que leur base de données a involontairement permis l'arrestation du Golden State Killer. Ils interdisent désormais l'utilisation à des fins légales sans une ordonnance du tribunal.
Il s'agit de la première entreprise de DTC aux États-Unis, fondée au début des années 2000. Aujourd'hui, elle compte environ 1,4 million de profils SNP. Depuis 2019, il permet l'accès au FBI, cependant les utilisateurs qui ne voulaient pas partager leurs données à des fins légales ont la possibilité de bloquer l'accès à des tiers.


===== Les tiers dans la généalogie génétique =====
FamilyTreeDNA (FTDNA)
Ces organismes, contrairement aux sociétés de DTC, ne produisent pas et ne vendent pas d'autotests ADN. Ces agences ne fournissent qu'une base de données.


====== GEDmatch ======
Il s'agit de la première entreprise de DTC aux États-Unis, fondée au début des années 2000. Aujourd'hui, elle compte environ 1,4 million de profils SNP. Depuis 2019, il permet l'accès au FBI, cependant les utilisateurs qui ne voulaient pas partager leurs données à des fins légales ont la possibilité de bloquer l'accès à des tiers.
GEDmatch a été fondé en 2010 par Curtis Roger et John Olson. Il ne s'agit pas d'une société de DTC car elle ne vend pas de kits de test ADN. GEDmatch est un site Web et dispose d'une base de données publique composée de données ADN provenant d'utilisateurs de diverses sociétés de DTC qui ont décidé de télécharger et de partager leurs informations. La base de données GEDmatch est la base de données la plus utilisée dans le domaine de la généalogie génétique. Depuis 2018, toujours après la capture du Golden State Killer, ils ont modifié leurs conditions en insistant sur la possibilité d'utiliser leurs données dans les enquêtes.


===== GEDmatch =====
====== DNASolves ======
Fondée en 2019, DNAsolves a pour objectif d'être une base de données pour les données génétiques. Cette base de données est faite exclusivement pour les enquêtes policières, en effet les utilisateurs n'ont pas la possibilité de rechercher des informations sur les autres utilisateurs.
GEDmatch a été fondé en 2010 par Curtis Roger et John Olson. Il ne s'agit pas d'une société de DTC car elle ne vend pas de kits de test ADN.<ref name="q1" /> GEDmatch est un site Web et dispose d'une base de données publique composée de données ADN provenant d'utilisateurs de diverses sociétés de CPT qui ont décidé de télécharger et de partager leurs informations. La base de données GEDmatch est la base de données la plus utilisée dans le domaine de la généalogie génétique. Depuis 2018, toujours après la capture du Golden State Killer, ils ont modifié leurs conditions en insistant sur la possibilité d'utiliser leurs données dans les enquêtes.


==== Déroulement de l'investigation avec la généalogie génetique ====
==== Déroulement de l'investigation avec la généalogie génetique ====
Les États-Unis d'Amérique sont le pays où la pratique de l'enquête généalogique génétique est la plus répandue. En général, si vous n'avez pas suffisamment de preuves et/ou pas de correspondance positive dans le codis au cours d'une enquête, vous pouvez rechercher une correspondance dans les bases de données GedMatch ou Dnasolves. S'il y a une ou plusieurs correspondances positives, un arbre généalogique est construit pour chaque individu possible. Pour construire un arbre généalogique, toutes les informations possibles sont utilisées, comme les archives des journaux, les médias sociaux, les arbres généalogiques publics. Les arbres généalogiques permettent de vérifier s'il existe des corrélations entre la victime et les personnes figurant dans l'un des arbres construits. La précision d'une correspondance positive avec un utilisateur de bases de données génétiques n'est pas seulement déterminée par la proximité de l'échantillon d'ADN du suspect, mais aussi par la qualité et la quantité d'informations accessibles.
Les États-Unis d'Amérique sont le pays où la pratique de l'enquête généalogique génétique est la plus répandue. En général, si les agences d'investigation n'ont pas suffisamment de preuves et/ou pas de correspondance positive dans le codis au cours d'une enquête, les agences de détectives pouvent rechercher une correspondance dans les bases de données GedMatch ou Dnasolves. Le [[codis]], de l'anglais, combined DNA index system, est une base de données contenant des données ADN médico-légales provenant d'anciennes enquêtes. S'il y a une ou plusieurs correspondances positives, un [[arbre généalogique]] est construit pour chaque individu possible. Pour construire un arbre généalogique, toutes les informations possibles sont utilisées, comme les archives des journaux, les médias sociaux, les arbres généalogiques publics. Les arbres généalogiques permettent de vérifier s'il existe des corrélations entre la victime et les personnes figurant dans l'un des arbres construits. La précision d'une correspondance positive avec un utilisateur de bases de données génétiques n'est pas seulement déterminée par la proximité de l'échantillon d'ADN du suspect, mais aussi par la qualité et la quantité d'informations accessibles.

En 2019, le DoJ (département américain de la justice) a mis à jour ses conditions concernant cette pratique. L'utilisation de l'ADN dans les enquêtes doit être fondée sur le principe : "Codis first and last". Ce principe signifie qu'avant d'utiliser la généalogie génétique, il faut vérifier qu'une personne ne présente pas de concordance avec le codis, mais pas seulement, une personne ne peut pas être arrêtée uniquement après une concordance positive avec la base de données d'une société de DTC. En cas de concordance positive, le suspect doit subir un test ADN et ce résultat doit présenter une concordance positive avec l'échantillon précédemment introduit dans le codis. <ref name="q1" />


En 2019, le [[Département de la Justice des États-Unis|DoJ]] (département américain de la justice) a mis à jour ses conditions concernant cette pratique. L'utilisation de l'ADN dans les enquêtes doit être fondée sur le principe : "Codis first and last". Ce principe signifie qu'avant d'utiliser la généalogie génétique, il faut vérifier qu'une personne ne présente pas de concordance avec le codis, mais pas seulement, une personne ne peut pas être arrêtée uniquement après une concordance positive avec la base de données d'une société de DTC. En cas de concordance positive, le suspect doit subir un test ADN et ce résultat doit présenter une concordance positive avec l'échantillon précédemment introduit dans le codis.


==Bénéfices==
==Bénéfices==

Version du 16 mai 2022 à 21:28

La généalogie génétique est l'application de la génétique à la généalogie. La généalogie génétique nécessite l'usage de tests ADN qui mesurent le niveau de rapports génétiques entre des individus. Les gènes se transmettent entre générations, des comparaisons génétiques permettent d'établir un degré de parenté plus ou moins proche entre individus.

Historique

George Darwin, fils de Charles Darwin, fut le premier à estimer la fréquence des mariages entre cousins germains.

La première étude des patronymes en génétique fut celle de George Darwin, fils de Charles Darwin en 1875. Il trouva entre 2,25 % et 4,5 % de mariages entre cousins germains dans la population de la Grande-Bretagne suivant les classes sociales. Ce fut une innovation pour l'époque. Il fallut attendre les années 1990 pour avoir une nouvelle étude de l'histoire familiale, quand la carte génétique du chromosome Y permit de tracer sa transmission de père à fils à la suite des progrès de la génomique.

Dr Karl Skorecki, un urologue canadien d'origine juive ashkénaze s'étonna qu'un collègue juif sépharade, Cohen comme lui-même soit physiquement très différent. La tradition juive dit que tous les Cohen (avec les patronymes dérivés) descendent du prêtre Aaron, frère de Moïse. Karl Skorecki pensa que s'ils étaient vraiment les descendants d'un seul ancêtre, ils devraient avoir hérité du même lot de marqueurs génétiques et auraient peut-être gardé quelques caractères communs.

Pour tester cette idée, il contacta le professeur Michael Hammer de l'université de l'Arizona, chercheur en génétique moléculaire et pionnier de la recherche sur le chromosome Y. La relation de leurs découvertes dans la revue Nature en 1997 créa une vague de protestation dans les milieux scientifiques et religieux. Un marqueur déterminé aurait particulièrement une chance d'être plus présent chez les hommes juifs descendants de familles de prêtres que dans le reste de la population juive. Apparemment, une lignée commune s'était strictement conservée depuis des milliers d'années. En outre, les résultats montraient que les ruptures de la lignée masculine étaient rares ; ceci est nommé par le sigle anglais NPE, « Non-paternity event (en) », fréquent en généalogie génétique[1].

Le premier à tester cette nouvelle méthode de recherche concernant les noms de famille fut Bryan Sykes, un biologiste moléculaire de l'université d'Oxford. L'étude de son patronyme Sykes obtint des résultats positifs avec seulement quatre marqueurs du chromosome Y testés. Il montra ainsi que la génétique pouvait devenir un outil intéressant au service de la généalogie et de l'histoire.

En , la société Family Tree DNA (en) fit les premières propositions commerciales de tests génétiques pour la généalogie. C'était la première fois qu'une théorie portant sur les chromosomes Y d'individus était vérifiée en dehors d'une étude universitaire. De plus, le concept par Sykes d'une étude des patronymes, qui avait été adopté par plusieurs autres chercheurs universitaires en dehors d' Oxford, fut étendu à des projets par patronyme (une forme précoce de réseau social) et ces efforts aidèrent à répandre ces nouvelles connaissances auprès des généalogistes novateurs du monde entier.

En 2001, Sykes écrivit un livre Les sept filles d'Ève, qui définissait les sept haplogroupes majeurs des ancêtres des Européens. Le succès public du livre, couplé à l'accessibilité croissante des tests ADN pour la généalogie donna rapidement un succès croissant à la généalogie génétique, surtout dans les pays anglo-saxons, d'autres pays furent plus réticents et de rares hostiles. En 2003, le domaine des tests ADN pour les patronymes se trouva comme confirmé officiellement par un article de Jobling et Tyler-Smith dans Nature Reviews Genetics[2]. Le nombre de compagnies proposant des tests, et le nombre de leurs clients s'accrurent fortement.

Une autre étape dans la reconnaissance de la généalogie génétique fut le projet genographique. C'est un projet de recherche de 5 années lancé en 2005 par le National Geographic et IBM, en partenariat avec l'université de l'Arizona et Family Tree DNA. Bien que son but soit d'abord anthropologique et non généalogique, la vente par le projet en de plus de 350 000 kits de test dans le public, permettait de tester soit douze marqueurs STR sur le chromosome Y, soit des mutations sur la région HV1 (ou HVR1) de l'ADN mitochondrial, cela a augmenté la connaissance dans le public de la généalogie génétique[3].

En 2011, les laboratoires commerciaux recommandent de tester au moins 25 marqueurs STRs, puisque plus il y a de marqueurs testés, plus les résultats seront discriminants et performants. Un test de 12 marqueurs STRs n'est généralement pas assez discriminant pour fournir des conclusions pour un patronyme communément répandu. Les laboratoires génétiques comme Genebase et Family Tree DNA vendent l'option de tests 67 marqueurs du chromosome Y[4].

Les ventes annuelles de tests par toutes les compagnies et laboratoires sont estimées de l'ordre de 60 millions de dollars (2006)[5].

Les compagnies commerciales ont, pour chacune d'entre elles, un forum sur DNA-forums[6]. 1K Genomes et SGMF(Sorenson) ne sont pas des compagnies commerciales.1000 Genomes est un projet scientifique et SGMF un laboratoire scientifique qui ne vend pas des tests et n'en fait que pour de la recherche scientifique. La plupart des compagnies commerciales ont un article chacune dans le wikipedia anglais.

Interprétation

Depuis 2000, des dizaines de papiers scientifiques concernant ce sujet ont été publiés, et des milliers de résultats de tests privés organisés pour des projets patronymiques sont disponibles sur internet. La comparaison des résultats peut être compliquée parce que les compagnies n'utilisent pas les mêmes méthodes. Mais Il y a des tables de conversion entre les résultats des compagnies, se renseigner sur les forums de généalogie génétique comme DNA-forums qui a une section française librement accessible[7], d'autres sections nécessitent d'être membre pour y accéder.

Liste d'autres forums : Worldfamilies[8] Anthrocivitas[9] Eupedia[10] RootsWeb[11].

Utilisation

Lignages paternels et maternels à travers les tests ADN

Les deux types les plus fréquents de tests de généalogie génétique sont les tests sur l'ADN-Y (ligne paternelle) et ceux sur l'ADN-mitochondrial (ligne maternelle). Notez que les termes chromosome Y et ADN-Y sont utilisés de manière interchangeable dans cet article.

Ces tests entraînent la comparaison de certaines séquences de l'ADN pour des paires d'individus afin d'estimer la probabilité dans chaque paire que les individus partagent un ancêtre commun dans une limite raisonnable de générations et, à l'intérieur d'un modèle bayesien publié par Bruce Walsh, pour estimer le nombre de générations séparant les deux individus de leur plus récent ancêtre commun souvent désigné par MRCA (most recent common ancestor).

Tester l'ADN-Y suppose tester les marqueurs STR et/ou SNP. Le chromosome Y est présent seulement chez les mâles et révèle strictement l'information de la ligne paternelle (qui va de père en fils). Ces tests peuvent fournir de l'information sur les ancêtres récents (via STR) et anciens (via SNP). Le test STR révèlera un haplotype défini par les nombres des répétitions pour chaque marqueur, qui seront similaires parmi tous les hommes descendants d'un même ancêtre. Les tests SNP sont destinés à assigner la personne à un haplogroupe paternel, qui définit une large population génétique avec certains marqueurs SNP communs.

Le test ADNmt suppose tester le séquençage de la région HVR-1, la région HVR-2 ou les deux. Un test ADNmt peut aussi inclure le test de SNP additionnels dans la région codante (non hypervariable mais beaucoup plus grande) pour assigner un haplogroupe maternel à la personne, on peut même séquencer tout l'ADNmt de la personne. C'est une question de prix du test.

Les résultats ADN-Y ou ADNmt pourront être comparés aux résultats d'autres ADN de même type à travers les bases de données privées ou publiques.

L'haplogroupe à la racine de l'arbre des haplogroupes-Y est Haplogroupe A (Y-ADN).

L'haplogroupe à la racine de l'arbre des haplogroupes mitochondriaux est Macrohaplogroupe L (ADNmt).

Origines géographiques et ethniques

Des tests ADN additionnels existent pour déterminer l'origine géographique et ethnique, mais ces tests relèvent moins de la généalogie traditionnelle.

La généalogie génétique a révélé des liens surprenants entre les peuples. Par exemple on a montré que les anciens Phéniciens sont les ancêtres d'une importante partie de la population de l'île de Malte. Des résultats préliminaires d'une étude par Pierre Zalloua de l'université américaine de Beyrouth que Spencer Wells fit financer par une allocation du comité pour la recherche et l'exploration du National Geographic, furent publiés dans la revue d' du National Geographic. Une des conclusions est que plus de la moitié des lignages chromosomiques de l'actuelle population maltaise pourrait être venue avec les Phéniciens[12].

Tout ceci est lié à la génétique des populations (L'étude de la distribution et des changements dans les fréquences des allèles) et aussi les recherches sur l'origine africaine de l'homme moderne.

Migrations humaines

Les tests ADN de la généalogie génétique sont aussi utilisés sur une plus grande échelle de temps pour tracer des modèles de migration humaine. Par exemple, on les utilise pour déterminer quand les premiers humains vinrent en Amérique du Nord et quel chemin ils suivirent pour y parvenir.

Pendant plusieurs années, de nombreux chercheurs et laboratoires de par le monde ont prélevé des échantillons de populations indigènes tout autour du globe pour faire des cartes de modèles historique de migrations humaines. Récemment, plusieurs projets furent créés avec le but de faire connaître cette science par le public. Un exemple mentionné au-dessus est le Projet génographique du National Geographic, qui vise à créer des cartes de migrations humaines repérées en collectant et analysant les échantillons ADN de plus de 100 000 personnes sur les cinq continents. Un autre exemple est l'analyse génétique pour trouver des ancêtres de « clans ADN », qui mesure des relations génétiques entre une personne précise et les groupes ethniques indigènes de par le monde[13].

Clients typiques et groupes d'intérêt

Les clients masculins démarrent le plus souvent avec un test du chromosome Y pour déterminer leur ancêtre direct par les pères. Les femmes généralement commencent un test mitochondrial pour tracer leur ancien lignage par les mères, pour lequel les hommes se font souvent tester dans le même but. Il est fréquent que des femmes intéressées par leur lignage paternel demandent à leur père ou frère de leur donner un échantillon.

Le but commun aux clients en achetant des tests ADN est d'obtenir un lien scientifiquement quantifié à un groupe ancestral spécifié. On trouve un fort exemple de ce motif dans les désirs exprimés de certains clients d'avoir une preuve de leur lointaine origine paternelle viking. Le groupe de discussion internet RootsWeb de généalogie génétique[14] a 750 membres dans le monde. Quelques inscrits ont fait différents tests ADN et cherchent conseils et guide pour comprendre leurs résultats. Les inscrits comprennent aussi des administrateurs de projets qui étudient des patronymes, des régions géographiques, ou des groupes ethniques. L'expérience des inscrits va de l'expert confirmé au novice. Dans quelques cas, on peut reconnaître à des inscrits d'avoir fait des contributions très utiles et inédites à la connaissance dans le domaine de la généalogie génétique, ainsi dans l'exploitation des résultats bruts du projet 1000 Genomes, avec des programmes informatiques spécialisés, ainsi des inscrits de DNA-forums ont découvert des centaines de nouveaux SNP du chromosome Y en 2011 et probablement cela ira à plus de 10 000 découverts, affinant considérablement les définitions des haplogroupes. Déjà des dizaines (ceux commençant par DF et Z) sont au catalogue de compagnies commerciales et commencent à apparaître sur l'arbre normalisé officiel des haplogroupes[15].

Lignages ADN paternelles et maternelles

  • Haplogroupe ancestral
  • Haplogroupe A (Hg A)
  • Haplogroupe B (Hg B)
Toutes ces molécules font partie de l'haplogroupe ancestral, mais à quelque moment dans le passé, une mutation se produisit dans la molécule ancestrale, la mutation A qui créa un nouveau lignage; c'est l'haplogroupe A et il est défini par la mutation A. À un moment plus récent dans le passé, une nouvelle mutation, la mutation B se produisit chez une personne de l'haplogroupe A; la mutation B définissant l'haplogroupe B. Celui-ci est un sous-groupe, ou « subclade » de l'haplogroupe A ; les deux haplogroupes A et B sont des « subclades » de l'haplogroupe ancestral.

Le génome mitochondrial humain est dans les mitochondries qui sont de petits organites dans le cytoplasme des cellules des Eucaryotes, comme celles des humains. Leur utilité principale est de fournir l'énergie à la cellule. On pense que les mitochondries sont les vestiges d'une bactérie endosymbiotique qui à une époque vivait indépendamment. Un indice que les mitochondries furent indépendantes est qu'elles contiennent un petit segment circulaire d'ADN, appelé ADN mitochondrial (ADNmt). L'immense majorité de l'ADN humain est contenu dans les chromosomes dans le noyau de la cellule, mais l'ADNmt est une exception. Les individus héritent leur cytoplasme et les organites qui y sont contenus, exclusivement par leurs mères, comme ils viennent de l'ovule seulement, non du sperme[16].

Quand une mutation se produit dans la molécule ADNmt, la mutation est transmise en ligne directe féminine à la descendance. Ces mutations rares viennent d'erreurs de copie—quand l'ADN est copié, il arrive qu'une erreur isolée se produise dans la séquence ADN, le résultat est appelé polymorphisme nucléotidique.

Le chromosome Y humain est spécifique aux hommes (chromosomes sexuels) ; presque tous les humains qui possèdent un chromosome Y seront de morphologie masculine. Les chromosomes Y sont donc transmis de père à fils ; bien que les chromosomes Y soient situés dans le noyau (dit aussi nucleus) de la cellule, ils se recombinent seulement avec le chromosome X aux extrémités du chromosome Y ; la vaste majorité du chromosome Y (95 %) ne se recombine pas. Quand les mutations (SNP, et erreurs de copie STR) se produisent dans le chromosome Y, elles sont transmises directement de père à fils en ligne directe masculine. Les ADN-Y et ADNmt partagent donc un certain trait : tous deux se transmettent inchangés excepté de rares mutations qui se produisent à chaque génération.

Les autres chromosomes, autosomes, et chromosome X chez la femme, partagent leur matériel génétique (on appelle ceci les enjambements qui conduisent aux recombinaisons durant la méiose, un type spécial de division cellulaire qui se produit dans le cours de la reproduction sexuée. En effet, ceci signifie que le matériel génétique de ces chromosomes sera mélangé en quelques générations, et donc toute nouvelle mutation est transmise par hasard des parents à leur progéniture.

Ce trait spécial qu'ensemble ADN-Y et ADNmt partagent, préserve un exemplaire « écrit » de leurs mutations parce que les ADN ne sont ni mélangés, ni transmis au hasard. Les mutations restent à une place fixe dans les deux types d'ADN. De plus la séquence historique de leurs mutations peut être ainsi déduites. Par exemple, si un ensemble de dix chromosomes Y (de dix hommes différents) contient une mutation A, mais seulement cinq de ces chromosomes contiennent une seconde mutation, B, on peut en déduire que la mutation B s'est produite après la mutation A.

En outre les dix hommes qui portent le chromosome avec la mutation A sont les descendants directs en ligne masculine du même homme qui fut le premier à porter la mutation. Le premier homme qui porta la mutation B fut aussi un descendant direct en ligne masculine de cet homme, mais est aussi ancêtre direct masculin de tous les hommes portant la mutation B. Des séries de mutations forment des lignages moléculaires. En plus chaque mutation SNP peut définir un ensemble de chromosomes Y spécifiques qu'on appelle haplogroupe.

Tous les hommes portant la mutation SNP A forme un haplogroupe, et tous les hommes portant la mutation B font partie de l'haplogroupe B, mais la mutation B (si c'est un SNP) définit ainsi un haplogroupe plus récent par lui-même (qui est un sous-groupe ou « subclade »), les hommes portant seulement la mutation A n'appartiennent pas à l'haplogroupe B. Les ADNmt, et les chromosomes Y ou ADN-Y se regroupent dans 2 systèmes différents de lignages et haplogroupes ; ils sont souvent représentés par des diagrammes en arbre.

Gestion des données

Investigation avec la généalogie génétique dans les Etats Unis[17][18][19]

Les données obtenues grâce aux tests ADN ont permis de résoudre certaines affaires non résolues et récentes. Cette utilisation de la généalogie génétique est très récente et a reçu une importance et une attention croissantes depuis 2018, quand avec l'utilisation de la généalogie génétique a été arrêté le Golden State Killer. L'affaire du Golden State Killer est l'une des plus importantes affaires non résolues des États-Unis d'Amérique. Les meurtres et les crimes ont été commis entre le milieu des années 1970 et le milieu des années 1980. La police n'a jamais vraiment arrêté l'enquête. En 2018, la sortie du livre " I'll Be Gone in the Dark : One Woman's Obsessive Search for the Golden State Killer ", écrit par Michelle McNamara a relancé l'intérêt pour cette affaire non résolue. Un parent de l'auteur du crime a effectué un test ADN avec Myheritage. La police a utilisé la base de données du MyHeritage pour rechercher des correspondances positives avec l'ADN inconnu de l'auteur du crime trouvé sur l'une des scènes de crime. Grâce à cette recherche, la police a pu relier Joseph James DeAngelo à certains des meurtres. DeAngelo a ensuite avoué tous ses crimes pour éviter la peine de mort. Après l'arrestation de DeAngelo, Myeritage et d'autres sociétés DTC (direct-to-costumer) ont modifié leurs conditions et refusé l'accès aux données aux agences d'investigation.

Les acteurs pour obtenir des données

Bien que l'investigation avec la généalogie génétique ait permis de résoudre plusieurs cas, il ne s'agit pas d'une méthode facilement applicable. En fait, les agences d'investigation n'ont pas la possibilité d'accéder facilement aux données en raison de l'éthique et des politiques de confidentialité des sociétés DTC. Les sociétés DTC n'autorisent normalement l'accès qu'à leurs utilisateurs et à des fins liées à la construction d'un arbre généalogique et/ou à la recherche d'ancêtres. Les sociétés de DTC ne sont pas les seules à posséder des bases de données, il existe des tiers tels que GEDmatch et DNASolves.

Les principales compagnies DTCs[20]
AncesrtyDNA :

Il s'agit de la plus grande entreprise de DTC et elle possède environ 20 millions de profils SNP (Single Nucleotide Polymorphism). Sa politique n'autorise pas l'accès à la base de données à des fins d'enquête ou d'identification de restes humains. Le seul moyen pour les agences d'investigation d'accéder aux données d'AncesryDNA est d'obtenir un mandat de perquisition d'une agence gouvernementale. Pour cette raison une grande partie de ses données ADN et de ses arbres généalogiques sont utilisés dans le cadre d'enquêtes.

23andME :

En janvier 2021, cette société comptait environ 12 millions d'utilisateurs. Elle n'autorise pas non plus l'accès à sa base de données à des fins d'enquête, car elle affirme que cette utilisation est contraire à ses principes et à son objectif principal.

MyHeritage :

Cette société dispose d'environ 4,5 millions de profils SNP et, contrairement aux autres sociétés, permet le transfert gratuit des données provenant de 23andMe, AncestryDNA, FTDNA et Living DNA. Leur politique de confidentialité a radicalement changé depuis que leur base de données a involontairement permis l'arrestation du Golden State Killer. Ils interdisent désormais l'utilisation à des fins légales sans une ordonnance du tribunal.

FamilyTreeDNA (FTDNA):

Il s'agit de la première entreprise de DTC aux États-Unis, fondée au début des années 2000. Aujourd'hui, elle compte environ 1,4 million de profils SNP. Depuis 2019, il permet l'accès au FBI, cependant les utilisateurs qui ne voulaient pas partager leurs données à des fins légales ont la possibilité de bloquer l'accès à des tiers.

Les tiers dans la généalogie génétique

Ces organismes, contrairement aux sociétés de DTC, ne produisent pas et ne vendent pas d'autotests ADN. Ces agences ne fournissent qu'une base de données.

GEDmatch

GEDmatch a été fondé en 2010 par Curtis Roger et John Olson. Il ne s'agit pas d'une société de DTC car elle ne vend pas de kits de test ADN. GEDmatch est un site Web et dispose d'une base de données publique composée de données ADN provenant d'utilisateurs de diverses sociétés de DTC qui ont décidé de télécharger et de partager leurs informations. La base de données GEDmatch est la base de données la plus utilisée dans le domaine de la généalogie génétique. Depuis 2018, toujours après la capture du Golden State Killer, ils ont modifié leurs conditions en insistant sur la possibilité d'utiliser leurs données dans les enquêtes.

DNASolves

Fondée en 2019, DNAsolves a pour objectif d'être une base de données pour les données génétiques. Cette base de données est faite exclusivement pour les enquêtes policières, en effet les utilisateurs n'ont pas la possibilité de rechercher des informations sur les autres utilisateurs.

Déroulement de l'investigation avec la généalogie génetique

Les États-Unis d'Amérique sont le pays où la pratique de l'enquête généalogique génétique est la plus répandue. En général, si les agences d'investigation n'ont pas suffisamment de preuves et/ou pas de correspondance positive dans le codis au cours d'une enquête, les agences de détectives pouvent rechercher une correspondance dans les bases de données GedMatch ou Dnasolves. Le codis, de l'anglais, combined DNA index system, est une base de données contenant des données ADN médico-légales provenant d'anciennes enquêtes. S'il y a une ou plusieurs correspondances positives, un arbre généalogique est construit pour chaque individu possible. Pour construire un arbre généalogique, toutes les informations possibles sont utilisées, comme les archives des journaux, les médias sociaux, les arbres généalogiques publics. Les arbres généalogiques permettent de vérifier s'il existe des corrélations entre la victime et les personnes figurant dans l'un des arbres construits. La précision d'une correspondance positive avec un utilisateur de bases de données génétiques n'est pas seulement déterminée par la proximité de l'échantillon d'ADN du suspect, mais aussi par la qualité et la quantité d'informations accessibles.

En 2019, le DoJ (département américain de la justice) a mis à jour ses conditions concernant cette pratique. L'utilisation de l'ADN dans les enquêtes doit être fondée sur le principe : "Codis first and last". Ce principe signifie qu'avant d'utiliser la généalogie génétique, il faut vérifier qu'une personne ne présente pas de concordance avec le codis, mais pas seulement, une personne ne peut pas être arrêtée uniquement après une concordance positive avec la base de données d'une société de DTC. En cas de concordance positive, le suspect doit subir un test ADN et ce résultat doit présenter une concordance positive avec l'échantillon précédemment introduit dans le codis.

Bénéfices

La généalogie génétique donne aux généalogistes un moyen de contrôler et d'étendre leurs résultats pour la généalogie avec de l'information obtenue par les tests ADN. Un résultat très similaire à celui d'un autre individu peut :

  • fournir des endroits pour de futures recherches généalogiques
  • aider à déterminer la région ancestrale
  • découvrir des parents vivants
  • valider une recherche en cours
  • confirmer ou rejeter des liens suspectés entre des familles
  • prouver ou rejeter des théories concernant l'origine de population
  • un sujet commun d'intérêt à travers les cultures

Inconvénients

Les personnes qui redoutent les tests ADN citent une des inquiétudes suivantes :

  • Coût des tests
  • Qualité des tests
  • Inquiétudes concernant la vie privée et les libertés

Finalement, les tests ADN-Y et l'ADNmt tracent seulement un seul lignage (le lignage du père du père du père, etc., .. de la personne et le lignage de la mère de la mère de la mère, etc., .. de la personne). 10 générations plus tôt, un individu a jusqu'à 1024 ancêtres possibles (moins si parmi les ancêtres, des cousins se sont mariés) et les tests ADN-Y ou ADNmt étudient seulement un de ses ancêtres, aussi bien que leurs descendants et leurs frères et sœurs (frères pour l'ADN-Y, frères et sœurs pour l'ADNmt). Cependant beaucoup de généalogistes conservent les références de beaucoup de cousins de différents degrés (1er ou germain, 2e, 3e, etc., avec des noms de famille différents) dont les ADN-Y et ADNmt sont différents, et ainsi seront encouragés de demander des tests pour trouver des lignages ADN supplémentaires. Malgré les difficultés d'analyse et le plus grand coût, les tests ADN sur les autosomes et le chromosome X s'accroissent pour compenser ces limites.

Croissance attendue

La généalogie génétique est un domaine en croissance rapide (dans certains pays, moins dans d'autres). Comme le coût des tests continue de décroître, le nombre de personnes en test continue de s'accroître. La probabilité de trouver un appariement génétique parmi des bases de données ADN devrait continuer à s'améliorer. Laboratoires et compagnies de test sont engagés dans des recherches et développements actifs qui permettront un plus haut degré de confiance et une meilleure interprétation, comprenant des rapports d'explication historique et des recherches adaptées aux clients. Les entreprises pratiquent de plus en plus de tests sur les chromosomes autosomes et X portant sur des millions marqueurs pour les nouvelles puces à ADN. Les entreprises de test achètent et adaptent les puces auprès d'entreprises du génie génétique aux chiffres d'affaires croissants tels qu'Affimetrix, Illumina, etc. Il y a des témoignages sur les forums (tel celui sur les autosomes de DNA-forums de personnes que ces tests plus chers et plus difficiles à interpréter ont pu trouver ou confirmer de nouveaux cousinages sur des lignées non directes.

Distance génétique entre individus

Quand l'arbre généalogique des individus est connu, on détermine l'identité génétique entre individus et on décrit souvent un pourcentage d'identité génétique, comme fraction du génome hérité d'ancêtres communs, au génome total, qui donne toujours approximativement 99,9 % d'identité entre deux humains[21].

Notes et références

  1. (en) Steve Olson, « Who’s Your Daddy? », The Atlantic, Jul-Aug 2007, Consulté le 19 février 2009.
  2. Guido Deboeck, « Genetic Genealogy Becomes Mainstream », BellaOnline, accessed 19 Feb 2009
  3. « The Genographic Project: A Landmark Study of the Human Journey », National Geographic, accessed 19 Feb 2009
  4. Genebase, Genetic Genealogy, consulté le 19 février 2009.
  5. « How Big Is the Genetic Genealogy Market? », The Genetic Genealogist, accessed 19 Feb 2009
  6. « https://dna-forums.org/index.php?/forum/40-genetic-dna-companies/ »(Archive.orgWikiwixArchive.isGoogleQue faire ?)
  7. DNA-forums
  8. [1], Worldfamilies
  9. [2], Anthrocivitas
  10. [3],
  11. [4], « RootsWeb is funded and supported by Ancestry.com and our loyal RootsWeb community. »
  12. Cassandra Franklin-Barbajosa, « In the Wake of the Phoenicians: DNA study reveals a Phoenician-Maltese link », National Geographic Online, Oct 2004, accessed 19 Feb 2009
  13. « DNA Clans (Y-Clan) », DNA Ancestry Analysis, Genebase, accessed 19 Feb 2009
  14. http://lists.rootsweb.com/index/other/DNA/GENEALOGY-DNA.html
  15. [5]
  16. Voir transmission mitochondriale pour en savoir plus.
  17. Ellen M. Greytak, CeCe Moore et Steven L. Armentrout, « Genetic genealogy for cold case and active investigations », Forensic Science International, vol. 299,‎ , p. 103–113 (ISSN 0379-0738, DOI 10.1016/j.forsciint.2019.03.039, lire en ligne, consulté le )
  18. Daniel Kling, Christopher Phillips, Debbie Kennett et Andreas Tillmar, « Investigative genetic genealogy: Current methods, knowledge and practice », Forensic Science International: Genetics, vol. 52,‎ , p. 102474 (ISSN 1872-4973, DOI 10.1016/j.fsigen.2021.102474, lire en ligne, consulté le )
  19. Ellen M. Greytak, David H. Kaye, Bruce Budowle et CeCe Moore, « Privacy and genetic genealogy data », Science, vol. 361, no 6405,‎ , p. 857–857 (ISSN 0036-8075 et 1095-9203, DOI 10.1126/science.aav0330, lire en ligne, consulté le )
  20. Daniel Kling, Christopher Phillips, Debbie Kennett et Andreas Tillmar, « Investigative genetic genealogy: Current methods, knowledge and practice », Forensic Science International: Genetics, vol. 52,‎ , p. 102474 (ISSN 1872-4973, DOI 10.1016/j.fsigen.2021.102474, lire en ligne, consulté le )
  21. AMNH > Our genetic identity. Consulté le 21 mars 2009.

Lectures recommandées

  • Terrence Carmichael and Alexander Kuklin (2000). How to DNA Test Our Family Relationships. DNA Press. Livre précoce (et encore unique) sur les paternités et autres tests de cousinages. Carmichael est un fondateur de GeneTree.
  • L. Cavalli-Sforza et al. (1994). The History and Geography of Human Genes. Princeton: Princeton University Press. Dense mais aisé à comprendre.
  • Luigi-Luca and Francesco Cavalli-Sforza (1998). The Great Human Diasporas, translated from the Italian by Sarah Thorne. Reading, Mass. : Perseus Books. Plus facile à lire que les autres livres de ce professeur de Stanford.
  • Colleen Fitzpatrick and Andrew Yeiser (2005). DNA and Genealogy. Rice Book Press. Très estimé dans les revues de génétique pour la manière de la présenter auprès des non-professionnels.
  • Clive Gamble (1993). Timewalkers: The Prehistory of Global Colonization. Stroud: Sutton. Compte-rendu populaire de la Préhistoire humaine par un anthropologue/archéologue britannique. Article d'American Scientist.
  • Cyndi Howells (n.d.). Netting Your Ancestors – Genealogical Research on the Internet. Baltimore: Genealogical Publishing Company. Guide des sources électroniques par l'auteur du site web Cyndi’s List.
  • M. Jobling (2003). Human Evolutionary Genetics.: Textes du niveau standard college et graduate school par un spécialiste reconnu.
  • Steve Olson (2002). Mapping Human History. Boston: Houghton Mifflin Company. Atlas des populations importantes.
  • Stephen Oppenheimer (2003). The Real Eve. Modern Man’s Journey out of Africa. Carroll & Graf. Champions de la théorie de la « route des ramasseurs des plages » sur les premières propagations de l'homme anatomiquement moderne avec beaucoup de détails.
  • PBS (2003). The Journey of Man DVD. Broadcast aired in January 2003, Spencer Wells, host.
  • Donald Panther-Yates and Elizabeth Caldwell Hirschman (2006). « DNA Haplotyping and Diversity: An Anthropogenealogical Method for Researching Lineages and Family Ethnicity », International Journal of the Humanities 2:2043-55. Guide pour trouver des paréages dans les banques de sonnées mondiales et interpréter l'information génétique en termes d'histoire et des récentes études de migrations.
  • Chris Pomery (2004) DNA and Family History: How Genetic Testing Can Advance Your Genealogical Research. London: National Archives. Guide précoce des généalogistes amateurs. Maintenant mis à jour (2007) dans Family History in the Genes: Trace Your DNA and Grow Your Family Tree.
  • Alan Savin (2003). DNA for Family Historians. Maidenhead: Genetic Genealogy Guides. Papier d'abord publié en 2000, maintenant disponible aussi en allemand.
  • Thomas H. Shawker (2004). Unlocking Your Genetic History: A Step-by-Step Guide to Discovering Your Family's Medical and Genetic Heritage (National Genealogical Society Guide, 6). Guide sur le difficile sujet de l'histoire familiale médicale et des maladies génétiques.
  • Megan Smolenyak and Ann Turner (2004). Trace Your Roots with DNA: Using Genetic Tests to Explore Your Family Tree. Rodale Books, (ISBN 978-1594860065). Outil pour des généalogistes amateurs par une conférencière de séminaire et une modératrice de forums généalogiques.
  • Linda Tagliaferro (1999). The Complete Idiot’s Guide to Decoding Your Genes. Alpha Books. En langage de chaque jour, une explication du rôle que les gènes jouent dans la formation de ce que nous sommes.
  • Spencer Wells (2004). The Journey of Man. New York: Random House.

Voir aussi

Liens externes

Organisation et instituts de recherche

Sites web d'information

Projets haplogroupes et patronymes

Bases de données ADN

Tests chromosome Y (ADN-Y)

Tests ADN mitochondrial ADNmt)

  • Mitosearch — Une des plus grandes bases ADNmt accessible au public
  • MtDNA Test Results Log – Premier log/blog public pour poster, partager, et comparer les résultats de tests ADN
  • base mitochondriale SGMF – 51.000 séquences de recherche (de np 15841 à np 720) liés à environ six millions d'ancêtres enregistrés