Intuitionnisme

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les autres significations, voir Intuitionnisme (homonymie).
image illustrant les mathématiques image illustrant la logique
Cet article est une ébauche concernant les mathématiques et la logique.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

L'intuitionnisme est une philosophie des mathématiques que L. E. J. Brouwer a élaborée au début du XXe siècle. Pour Brouwer, les mathématiques sont une libre création de l'esprit humain et tous les objets qu'elles manipulent doivent être accessibles à l'intuition. L'intuitionnisme a pour conséquence une profonde remise en cause des mathématiques, notamment en refusant l'infini actuel : un nombre réel ne peut être représenté comme une suite infinie de décimales qu'à la condition de disposer d'un moyen effectif de calculer chacune de ces décimales ; on parle alors de réel constructif.

Sur le plan logique l'intuitionnisme n'accepte pas le raisonnement par l'absurde ou le tiers exclu pour la raison que ces principes permettent de démontrer des propriétés de façon non constructive : par exemple si on veut démontrer l'existence d'un nombre réel satisfaisant une certaine propriété, on peut raisonner par l'absurde, supposer qu'un tel réel n'existe pas, en déduire une contradiction et conclure que donc un tel réel existe, mais cette démonstration ne donne aucune indication sur la façon dont on pourrait calculer ce réel. Pour un intuitionniste on a juste démontré que l'existence d'un tel réel n'est pas contradictoire, mais pas que ce réel existe.

La logique intuitionniste a été développée par V. Glivenko[1] et Arend Heyting, Kurt Gödel[2] et Andreï Kolmogorov[3] et formalise les principes logiques sur lesquels s'appuie l'intuitionnisme.

L'intuitionnisme est souvent considéré comme une forme de constructivisme, avec lequel il a beaucoup en commun, mais il s'en écarte quand, comme c'est le cas pour l'intuitionnisme originel de Brouwer, il conduit à des énoncés mathématiques valides qui ne le sont pas classiquement. La logique intuitionniste ne permet, elle, de démontrer que des énoncés valides en logique classique.

Bibliographie[modifier | modifier le code]

Références[modifier | modifier le code]

  1. Glivenko, V., 1928, “Sur la logique de M. Brouwer”, Académie Royale de Belgique, Bulletin de la classe des sciences, 14: 225–228.
  2. Kurt Godel, K. Collected Works, Vol. III, Oxford: Oxford University Press (1995)
  3. Andreï Kolmogorov, "On the principle of the excluded middle" (1925) in Jean van Heijenoort, 1967. A Source Book in Mathematical Logic, 1879–1931. Harvard Univ. Press: 414–37.