Graphe aléatoire

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, un graphe aléatoire est un graphe qui est généré par un processus aléatoire. Le premier modèle de graphes aléatoires a été popularisé par Paul Erdös et Alfréd Rényi dans une série d'articles publiés entre 1959 et 1968[1].

Les deux modèles de base d'Erdös et Rényi[modifier | modifier le code]

Le modèle d'Erdös et Rényi regroupe en fait deux modèles, formellement différents, mais étroitement liés. Dans les deux modèles,

  • l'ensemble des sommets est \scriptstyle\ \{1,2,3,\dots,n\},\ noté par la suite \scriptstyle\ [\![n]\!]\ ;
  • les arêtes potentiellement présentes sont les \scriptstyle\ n(n-1)/2\ parties à deux éléments de \scriptstyle\ [\![n]\!]\ ; l'ensemble de ces arêtes est parfois noté \scriptstyle\ {[\![n]\!]\choose2}.\ Nous le noterons toutefois J pour des raisons de commodité typographique, et de cohérence avec l'article sur l'inégalité de Harris.
  • ainsi, le graphe aléatoire est non orienté, et n'a ni boucles, ni arêtes multiples.

Le graphe aléatoire binomial[modifier | modifier le code]

Dans ce modèle, souvent noté \scriptstyle\ \mathbb{G}(n,p),\ chacune des n(n-1)/2 arêtes est présente avec probabilité p, absente avec probabilité 1-p, cela indépendamment du statut des autres arêtes. Le cas p=0,5 a été étudié par Erdös dès 1947[2]. Le nombre \scriptstyle\ N_p\ d'arêtes de \scriptstyle\ \mathbb{G}(n,p)\ suit la loi binomiale de paramètres n(n-1)/2 et p.

Le graphe aléatoire uniforme[modifier | modifier le code]

Dans ce modèle, souvent noté \scriptstyle\ \mathbb{G}(n,M),\ on choisit uniformément un sous-ensemble de M arêtes parmi les n(n-1)/2 arêtes possibles. Lorsqu'un graphe G à n sommets possède M arêtes, la probabilité de G est donnée par

\mathbb{P}(G)\ =\ \frac1{{{n\choose2}\choose M}}.

C'est le modèle \scriptstyle\ \mathbb{G}(n,M)\ qui est principalement étudié dans la série d'articles fondateurs publiés par Erdös et Rényi entre 1959 et 1968[3].

Les deux processus aléatoires à valeurs graphe[modifier | modifier le code]

  • On peut partir d'un graphe sans arêtes, donc totalement déconnecté, et ajouter une arête tirée au hasard uniformément, puis une autre, etc ... sans remise. On obtient ainsi une suite \scriptstyle\ \{\mathbb{G}(n,M)\}_{0\le M\le n(n-1)/2},\ croissante (au sens de l'inclusion de l'ensemble des arêtes), de 1+n(n-1)/2 graphes aléatoires, qui forme un processus à temps discret à valeurs dans l'ensemble des graphes. Chaque terme de la suite est un graphe aléatoire uniforme défini à la section précédente. Un avantage de cette construction est de voir coexister différents graphes aléatoires de paramètres M différents, sur le même espace probabilisé, et de pouvoir ainsi comparer leurs caractéristiques, non pas en moyenne ou en loi, mais pour chaque élément ω de l'espace probabilisé considéré. Cela permet de raisonner par couplage.
  • On peut aussi associer à chaque arête e de J une variable aléatoire \scriptstyle\ T_{e}\ , le poids de l'arête, de sorte que la famille \scriptstyle\ (T_{e})_{e\in J}\ soit une famille de variables aléatoires i.i.d., par exemple de loi uniforme sur l'intervalle [0,1]. On note alors \scriptstyle\ \mathbb{G}(n,p)\ le graphe formé des arêtes dont le poids est inférieur à p. Pour chaque arête, cela se produit avec probabilité
\mathbb{P}(T_e\le p)\ =\ p.
On obtient ainsi une famille \scriptstyle\ \{\mathbb{G}(n,p)\}_{0\le p\le 1},\ croissante, de graphes aléatoires, qui forme un processus à temps continu, à valeurs dans l'ensemble des graphes. Cette famille est croissante au sens de l'inclusion de l'ensemble des arêtes : une arête e présente dans \scriptstyle\ \mathbb{G}(n,p)\ est aussi présente dans \scriptstyle\ \mathbb{G}(n,p+\varepsilon),\ \varepsilon>0,\ puisque \scriptstyle\ \{T_e\le p\}\ \Rightarrow\ \{T_e\le p+\varepsilon\}.\ Chaque terme de la famille de graphes est un graphe aléatoire binomial défini précédemment.

Métaphore. On peut imaginer les sommets du graphe comme n îles sur un lac, communicant à l'aide de passerelles (les arêtes e ), submergées à des profondeurs respectives \scriptstyle\ T_{e}\ sous la surface de l'eau. Si le lac se vide de son eau graduellement, on va voir émerger progressivement les passerelles, et des composantes connexes regroupant de plus en plus d'îles vont se former.

Liens entre les deux modèles[modifier | modifier le code]

En vertu du théorème central limite, ou de l'inégalité de Hoeffding, la loi binomiale est très concentrée autour de son espérance. Plus précisément, le nombre d'arêtes \scriptstyle\ N_p\ d'un graphe aléatoire de loi \scriptstyle\ \mathbb{G}(n,p)\ est donc très proche de \scriptstyle\ \hat{M}=\left\lfloor p\ {n\choose2}\right\rfloor\ surtout si cette dernière quantité \scriptstyle\ \hat{M}\ est grande devant n : en effet[4],

\forall t>0,\qquad\mathbb{P}\left(\left|N_p-\hat{M}\right|\ge tn\right)\ \le\ 2\,e^{-2t^2}.

De plus, la loi conditionnelle de \scriptstyle\ \mathbb{G}(n,p)\ sachant que \scriptstyle\ N_p=M\ est précisément \scriptstyle\ \mathbb{G}(n,M).\ Pour cette raison, si M est proche de \scriptstyle\ \hat{M}\ , ou, de manière équivalente, si

p\simeq\frac{2M}{n(n-1)}\,,

il est généralement admis (et souvent démontré[5]) que les deux modèles \scriptstyle\ \mathbb{G}(n,p)\ et \scriptstyle\ \mathbb{G}(n,M)\ ont des propriétés très proches.

En poussant plus loin, notons \scriptstyle\ T_{(k)}\ la k-ème valeur de la suite \scriptstyle\ (T_{e})_{e\in J}\ une fois que cette dernière suite est rangée dans l'ordre croissant : la suite \scriptstyle\ (T_{(k)})_{1\le e\le n(n-1)/2}\ est appelée la suite des statistiques d'ordre de la suite \scriptstyle\ (T_{e})_{e\in J}.\ Lorsque p prend la valeur aléatoire \scriptstyle\ T_{(M)}, \ alors \scriptstyle\ \mathbb{G}(n,T_{(M)})\ est exactement \scriptstyle\ \mathbb{G}(n,M).\ Pour corroborer les observations précédentes, notons que \scriptstyle\ T_{(M)}\ est très proche de \scriptstyle\ 2M/n(n-1),\ au sens où, en conséquence de résultats célèbres de Donsker et de Kolmogorov[6], la probabilité

\varphi_n(x)=\mathbb{P}\left(\sup_{1\le M\le n(n-1)/2}\left\{|T_{(M)}-\tfrac{2M}{n(n-1)}|\right\}\ge \tfrac{x\sqrt2}n\right)

satisfait

\exp(-2x^2)\ \le\ \liminf_{n}\varphi_n(x)\ \le\ \limsup_{n}\varphi_n(x)\ \le\ 2\sum_{r=1}^{+\infty} (-1)^{r-1}\exp(-2r^2x^2),

les 1ers et 4e termes étant les queues de distribution des lois de Rayleigh et de Kolmogorov, respectivement : en résumé, le supremum (lorsque M varie) des erreurs \scriptstyle\ |T_{(M)}-2M/n(n-1)|\ est de l'ordre de 1/n.

Ordre et croissance[modifier | modifier le code]

Un graphe peut être vu comme une partie de l'ensemble J des arêtes, donc l'espace probabilisé est ici l'ensemble Ω des parties de J, qu'on peut parfois identifier à \scriptstyle\ \{0,1\}^J.\ Cette identification est en particulier utile lorsqu'on veut appliquer l'inégalité de Harris.

  • L'inclusion est une relation d'ordre partielle sur Ω.
  • Comme d'ordinaire, une application X définie sur Ω, à valeurs réelles, est dite croissante si
\{\omega\le \omega^{\prime}\}\quad\Rightarrow\quad\{X(\omega)\le X(\omega^{\prime})\}.\
  • Une partie A de Ω est dite croissante si
\{\omega\le \omega^{\prime}\ \text{et}\ \omega\in A\}\quad\Rightarrow\quad\{\omega^{\prime}\in A\}.\
De manière équivalente, une partie A de Ω est dite croissante si sa fonction indicatrice est croissante.
  • La propriété de décroissance d'une application ou d'une partie a une définition analogue.
Exemples  :

Parmi les propriétés et paramètres d'un graphe,

  • la connexité est croissante, i.e. la partie A de Ω constituée de tous les graphes connexes, est une partie croissante de Ω : si on ajoute une arête à un graphe connexe, le graphe ainsi obtenu est encore connexe ;
  • la planarité est décroissante : si on enlève une arête à un graphe planaire, le graphe ainsi obtenu est encore planaire ;
  • le nombre chromatique est croissant ;
  • le nombre de stabilité est décroissant ;
  • la propriété triangle-free est décroissante.

On a l'inégalité suivante :

Inégalité de Harris — Dans le cadre du graphe aléatoire binomial,

  • soit deux variables aléatoires X et Y croissantes sur \scriptstyle\ \Omega.\ Alors
 \mathbb{E}\left[XY\right] \geq \mathbb{E}\left[X\right] \mathbb{E}\left[Y\right]\,;
  • soit deux parties croissantes A et B de \scriptstyle\ \Omega.\ Alors
 \mathbb{P}(A\cap B) \geq \mathbb{P}(A) \mathbb{P}(B).
Remarques  :
  • Cela revient à dire qu'il y a une corrélation positive entre les variables concernées, puisqu'on peut reformuler la première inégalité sous la forme

\text{Cov}\left(X,Y\right)\ \ge \ 0.
  • L'inégalité vaut aussi pour des variables ou des parties décroissantes, mais le sens des inégalités change lorsque les variables ou les parties concernées ont des sens de monotonie opposés.

La connexité[modifier | modifier le code]

Le seuil de connexité[modifier | modifier le code]

Théorème (Erdös, Rényi, 1960) — Posons \scriptstyle\ a_n=np(n)-\ln n,\ ou encore :

p(n)\ =\ \frac{\ln n}n\,+\, \frac{a_n}n.
  • Si \scriptstyle\ \lim_{n}a_n=+\infty,\ alors
    \lim_{n}\mathbb{P}\left(\mathbb{G}\left(p(n),n\right)\mathrm{~est~connexe}\right)=1.
  • Si \scriptstyle\ \lim_{n}a_n=-\infty,\ alors
    \lim_{n}\mathbb{P}\left(\mathbb{G}\left(p(n),n\right)\mathrm{~est~connexe}\right)=0.

On dit que \scriptstyle\ \ln(n)/n\ est un seuil étroit pour la propriété de connexité, l'étroitesse faisant référence au fait que la propriété est vérifiée même si \scriptstyle\ a_n\ tend vers l'infini strictement moins vite que \scriptstyle\ \ln n.\

Énumération des points isolés[modifier | modifier le code]

Il est plus facile (plus probable) de réussir à couper les n-1 connexions entre un point et son complémentaire, que les k(n-k) connexions entre un groupe de k points et son complémentaire, car la fonction f(k)=k(n-k) augmente très rapidement au voisinage de 1, d'où, lorsque k augmente, beaucoup plus d'arêtes à couper, et une probabilité bien plus faible de réussir à les couper toutes. En corollaire, avec le choix du paramètre p fait plus haut, le graphe G(n,p) sera non connexe « presque uniquement » s'il a des points isolés, au sens où la probabilité d'être connexe est très proche de la probabilité de ne pas avoir de points isolés, \scriptstyle\ \mathbb{P}\left(X_n=0\right),\ qui vaut approximativement \scriptstyle\ e^{-e^{-c}}.\ En effet, on a le résultat suivant :

Théorème — Points isolés (Erdös, Rényi, 1960). Supposons que

\tilde{p}(n)\ =\ \frac{\ln n}n+\frac cn+\frac{\varepsilon(n)}n.

Alors le nombre \scriptstyle\ X_n\ de points isolés du graphe \scriptstyle\ G\left(\tilde{p}(n),n\right)\ converge en loi vers une loi de Poisson de paramètre \scriptstyle\ e^{-c}.\

Ce théorème est une illustration frappante du paradigme de Poisson, selon lequel, lorsque se présente un grand nombre d'opportunités d'observer un évènement rare (i.e. peu probable), alors le nombre total d'évènements rares effectivement observés suit une loi de Poisson.

Le théorème double-exponentiel[modifier | modifier le code]

Erdös et Rényi en déduisent un résultat plus précis que la propriété de seuil étroit :

Théorème double-exponentiel (Erdös, Rényi, 1960) —  Supposons que

\tilde{p}(n)\ =\ \frac{\ln n}n+\frac cn+\frac{\varepsilon(n)}n.
Alors
\lim_{n}\mathbb{P}\left(\mathbb{G}\left(\tilde{p}(n),n\right)\mathrm{~est~connexe}\right)=e^{-e^{-c}}.

Notons \scriptstyle\ T_n\ le premier instant t où le graphe \scriptstyle\ \mathbb{G}\left(t,n\right)\ est connexe :

T_n\ =\ \inf\left\{t\ge 0\ |\ \mathbb{G}\left(t,n\right)\mathrm{~est~connexe}\right\},

de sorte que

\left\{\mathbb{G}\left(t,n\right)\mathrm{~est~connexe}\right\}\quad\Rightarrow\quad\left\{T_{n}\le t\right\}\quad\Rightarrow\quad\left\{\forall\varepsilon>0,\quad \mathbb{G}\left(t+\varepsilon,n\right)\mathrm{~est~connexe}\right\}.

On peut alors voir le théorème double-exponentiel comme un résultat sur le développement asymptotique de \scriptstyle\ T_n\  : si \scriptstyle\ Z_n\ est défini par la relation suivante :

T_n\ =\ \frac{\ln n}{n}\ +\  \frac{Z_n}{n},

alors le théorème double-exponentiel stipule que \scriptstyle\ Z_n\ converge en loi vers la distribution de Gumbel, ce qui pourrait se traduire, dans une version probabiliste de la notation de Landau, par :

T_n\ =\ \frac{\ln n}{n}\ +\  \Theta\left(\frac{1}{n}\right).

À voir[modifier | modifier le code]

Notes[modifier | modifier le code]

  1. Le premier article, publié en 1959, est "On Random Graphs I", Publ. Math. Debrecen 6, 290.
  2. (en) Pal Erdös, « Some remarks on the theory of graphs », Bull. Amer. Math. Soc., vol. 53, no 4,‎ 1947, p. 292-294 (lire en ligne). On considère souvent cet article comme marquant la naissance de la « méthode probabiliste » pour l'étude des graphes non aléatoires, en particulier pour la théorie de Ramsey.
  3. Pour un historique, voir Karonski et Rucinski, The origins of the theory of random graphs, 1997.
  4. voir (en) Svante Janson, Tomasz Luczak et Andrzej Rucinski, Random Graphs, Wiley-Interscience,‎ 15 mai 2000, 1e éd. (1re éd. 2000), hardcover, 333 p. (ISBN 0471175412 et 978-0471175414), Ch. 2, Exponentially small probabilities, pour plus de détails.
  5. voir (en) Svante Janson, Tomasz Luczak et Andrzej Rucinski, Random Graphs, Wiley-Interscience,‎ 15 mai 2000, 1e éd. (1re éd. 2000), hardcover, 333 p. (ISBN 0471175412 et 978-0471175414), section 1.4, Asymptotic equivalence, p.14.
  6. voir (en) Galen R. Shorack et Jon A. Wellner, Empirical Processes With Applications to Statistics, Society for Industrial & Applied Mathematics,‎ 4 septembre 2009, 998 p. (ISBN 0898716845 et 978-0898716849), Section 3.8, Limiting distributions under the null hypothesis, p. 142, et Ch. 18, The Standardized Quantile Process, p. 637.
  7. a et b Th. 6.7, p. 144 de (en) Svante Janson, Tomasz Luczak et Andrzej Rucinski, Random Graphs, Wiley-Interscience,‎ 15 mai 2000, 1e éd. (1re éd. 2000), hardcover, 333 p. (ISBN 0471175412 et 978-0471175414).
  8. voir l'article Bijection de Joyal, ou bien (fr) Martin Aigner et Günter M. Ziegler, Raisonnements divins, 2e édition, 2006, pp. 195-201, La formule de Cayley pour le nombre d’arbres.

Bibliographie[modifier | modifier le code]

  • (en) Béla Bollobas, Random Graphs, Cambridge University Press,‎ 15 janvier 2001, 2e éd. (1re éd. 1985), 516 p. (ISBN 0521797225 et 978-0521797221).
  • (en) Svante Janson, Tomasz Luczak et Andrzej Rucinski, Random Graphs, Wiley-Interscience,‎ 15 mai 2000, 1e éd. (1re éd. 2000), hardcover, 333 p. (ISBN 0471175412 et 978-0471175414).
  • École d'Eté de Probabilités de Saint-Flour XXI-1991, Lecture Notes in Math., 1541, Springer, 1993. Partie 3 : Joel Spencer, Nine lectures on random graphs (pp. 293-347).

Autres pages[modifier | modifier le code]