Inégalité de Hoeffding

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

L’inégalité de Hoeffding est une inégalité de concentration concernant les sommes de variables aléatoires indépendantes et bornées. Il existe une version plus générale de cette inégalité, concernant une somme d'accroissements de martingales, accroissements là encore bornés : cette version plus générale est parfois connue sous le nom d'inégalité d'Azuma-Hoeffding.

Énoncé[modifier | modifier le code]

Inégalité de Hoeffding — Soit une suite de variables aléatoires réelles indépendantes vérifiant, pour deux suites de nombres réels tels que

On pose

Alors, pour tout

Bornes pour la dispersion de la loi binomiale de paramètres n et p=0,5, obtenues respectivement à l'aide de l'inégalité de Bienaymé-Tchebychev et à l'aide de l'inégalité de Hoeffding.

Cas de la loi binomiale[modifier | modifier le code]

Supposons que

Alors suit la loi binomiale de paramètres n et p. L'inégalité de Bienaymé-Tchebychev et l'inégalité Hoeffding donnent respectivement

On voit que dans ce cas (et c'est assez représentatif de la situation générale) l'inégalité de Hoeffding est beaucoup plus précise pour suffisamment grand.

Démonstration[modifier | modifier le code]

Inégalité préliminaire[modifier | modifier le code]

La démonstration fait usage de la proposition suivante :

Proposition —  Soit une variable aléatoire réelle bornée et centrée (vérifiant ). Soit deux nombres réels tels que et tels que Alors, pour tout réel

Par convexité de la fonction on a, pour

En passant à l'espérance, puisque on en déduit que

On pose

Il suit que

On remarque alors que De plus

Alors, en vertu de la formule de Taylor-Lagrange,

Démonstration de l'inégalité de Hoeffding[modifier | modifier le code]

On applique ensuite l'inégalité de Markov. Pour cela, on pose:

et on remarque que

Pour tout on a donc, en vertu d'un corollaire de l'inégalité de Markov, de l'indépendance des et donc des et de la proposition précédente :

L'inégalité est en particulier vraie pour

qui réalise le minimum de la borne de droite, ce qui démontre la première inégalité. La deuxième inégalité se démontre en remplaçant par et par dans le calcul précédent, en posant

et en remarquant que

La troisième inégalité est une conséquence directe des deux premières.

Voir aussi[modifier | modifier le code]

Pages liées[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • C. McDiarmid, On the method of bounded differences. In Surveys in Combinatorics, London Math. Soc. Lectures Notes 141, Cambridge Univ. Press, Cambridge 1989, 148–188.
  • W. Hoeffding, "Probability inequalities for sums of bounded random variables", J. Amer. Statist. Assoc. 58, 13–30, 1963