Aller au contenu

Théorème de la limite monotone

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 27 octobre 2021 à 12:06 et modifiée en dernier par Anne Bauval (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

Le théorème de la limite monotone est un théorème d'analyse selon lequel les éventuelles discontinuités d'une fonction numérique monotone sont « par sauts » et les suites monotones possèdent une limite.

Énoncé pour les fonctions

Soient ]a, b[ un intervalle réel ouvert non vide (borné ou non : ) et une fonction croissante. Alors[1],[2] :

  • f admet en b une limite à gauche, qui est finie si f est majorée et qui vaut +∞ sinon ;
  • f admet en a une limite à droite, qui est finie si f est minorée et qui vaut –∞ sinon ;
  • f admet en tout point x de ]a, b[ une limite à gauche et une limite à droite, qu'on note respectivement f(x) et f(x+) ; elles sont finies et vérifient .

Plus généralement[3] :

Soient une partie de , une application croissante et .

  • Si est adhérent à alors
    .
  • Si est adhérent à alors
    .

Le théorème analogue pour les fonctions décroissantes s'en déduit en remplaçant f par f ; il convient d'inverser le sens des inégalités et d'échanger « minorée » et « majorée » ainsi que « +∞ » et « –∞ ».

Énoncé pour les suites

Lorsqu'on prend et dans l'énoncé général ci-dessus, on obtient :

Soit une suite croissante de réels. Alors, . Par conséquent :

  • si la suite est majorée alors elle est convergente ;
  • si la suite n'est pas majorée alors elle tend vers +∞.

Le théorème analogue pour les suites décroissantes s'en déduit en remplaçant par .

Notes et références

  1. E. Ramis, C. Deschamps et J. Odoux, Cours de mathématiques spéciales, vol. 3, Masson, , p. 119-120, corollaires.
  2. F. Benoist, B. Rivet, S. Maffre, L. Dorat et B. Touzillier, Mathématiques ECS 1re année, Dunod, coll. « Le compagnon », (lire en ligne), p. 396.
  3. Ramis, Deschamps et Odoux 1976, p. 119, ne l'énoncent et le démontrent que pour , mais la preuve du cas général est identique : voir par exemple « Théorème de la limite monotone » sur Wikiversité.

Articles connexes