Gestion par volumes logiques

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La gestion par volumes logiques (en anglais, logical volume management ou LVM) est à la fois une méthode et un logiciel de gestion de l'utilisation des espaces de stockage d'un ordinateur. Il permet de gérer, sécuriser et optimiser de manière souple les espaces de stockage en ligne dans les systèmes d'exploitation de type UNIX.

On parle également de gestionnaire de volumes ou Volume Manager en anglais.

Concepts[modifier | modifier le code]

LVM : VG (volume group), PV (physical volume) and LV (logical volume)

Volumes physiques PV[modifier | modifier le code]

Les disques durs, partitions de disques durs, volumes RAID ou unités logiques provenant d'un SAN forment des « volumes physiques » (physical volumes ou PV).

Groupes de volumes VG[modifier | modifier le code]

On concatène ces volumes physiques dans des « groupes de volumes » (volume groups ou VG).
Ces VG sont équivalents à des pseudo-disques-durs.

Volumes logiques LV[modifier | modifier le code]

Des « volumes logiques » (logical volumes ou LV) sont alors découpés dans les groupes de volumes, puis formatés et montés dans des systèmes de fichiers ou utilisés en tant que raw devices.
Les LV sont équivalents à des pseudo-partitions.

Volumes agrégés par bandes (striping)[modifier | modifier le code]

Les volumes logiques peuvent être « stripés » sur un ensemble de volumes physiques, à l'instar du RAID 0.

Cette technique est utilisée pour améliorer les performances, mais rend plus vulnérable à une panne disque.

Miroir (mirroring)[modifier | modifier le code]

Les volumes logiques peuvent être également mirrorés, à l'instar du RAID 1.

Cette technique permet de se protéger contre une panne sur un disque dur.

Extensions[modifier | modifier le code]

Les extensions sont les plus petites unités de stockage LVM, la taille des extensions est la même pour chaque volume logique d'un même groupe de volume. Les extensions non utilisées peuvent servir à augmenter la taille d'un groupe de volumes.

Il existe deux types d'extensions :

  • les extensions physiques ou PE (Physical Extents)
  • les extensions logiques ou LE (Logical Extent)

Clichés (snapshots)[modifier | modifier le code]

Les snapshots sont des volumes logiques permettant d'effectuer une sauvegarde cohérente d'un autre volume logique du même groupe de volumes.

La création d'un snapshot consiste à prendre une « photo », un instantané du volume logique cible (ce qui est quasi-immédiat) et on commence alors à enregistrer les modifications apportées au volume logique cible.

Avantage des snapshots 
Ils peuvent être utilisés comme une méthode de sauvegarde. Ils permettent de stocker une image statique d'un volume logique à un instant précis. On peut ensuite effectuer une sauvegarde sur cartouche du snapshot, qui contiendra les données présentes sur le volume cible au moment de la création du snapshot.
Limite des snapshots 
Ils ne sont pas une sauvegarde complète d'un volume logique, ils enregistrent uniquement les modifications apportées au volume cible, ils ne contiennent pas les données de celui-ci ; de plus ils ne sont pas persistants, c’est-à-dire qu'ils disparaissent en cas de redémarrage de la machine.
Taille des snapshots 
Une idée très répandue veut que la taille d'un snapshot doit être égale à environ 15-20 % de la taille du volume logique cible. Ces approximations sont totalement infondées, la taille nécessaire à un snapshot dépendant de l'activité en écriture sur le volume logique cible pendant la durée de vie de ce snapshot. La suppression de toutes les données sur le volume logique cible demandera par exemple un snapshot d'une taille au moins égale à la taille du volume logique cible. La taille d'un snapshot doit donc être calculée suivant l'estimation du volume de données écrit sur le lecteur cible pendant la durée de votre sauvegarde. Dans la plupart des cas cela nécessitera bien moins de 15 %. En outre, un facteur très important dans le calcul de l'espace disponible pour le snapshot est la quantité d'opération d'écriture par seconde. Un effacement complet du volume logique attaché nécessitera effectivement 100% d'espace disponible mais pourrait durer plusieurs jours alors que l'utilisation d'un snapshot pour externaliser un backup pendant que le volume principal continue d'être utilisé risque de remplir très rapidement l'espace disponible.

Il est également possible de créer des snapshot dit thin-provisionné pour lesquels la taille disponible n'est pas spécifiée préalablement. Elle permet notamment de prendre autant d'espace que nécessaire pendant que le volume groupe lui-même est étendu pour faire face aux besoins d'espace.

Partitions et systèmes de fichiers[modifier | modifier le code]

Les partitions et systèmes de fichiers (filesystems) ne font pas partie de LVM.

Une partition peut être utilisée en volume physique, un système de fichiers doit être installé sur un volume logique pour pouvoir être monté et utilisé.

Agrandissement et réductions[modifier | modifier le code]

Il est possible d'ajouter des PV à chaud dans des VG, mais un PV doit être inutilisé (aucune donnée) pour être retiré d'un VG.

Il est possible d'agrandir ou réduire des LV, mais les filesystems installés dessus doivent prendre en charge cette opération. De nombreux filesystems prennent en charge l'agrandissement et la réduction à chaud, à défaut il doit être démonté (donc interruption de service) pour subir cette opération.

Fonctionnalités[modifier | modifier le code]

Les disques durs peuvent être locaux (branchés dans le serveur) ou distants, sur un SAN (Storage Area Network) ou un DAS (Direct Attach Storage) sous forme d'unités logiques (auxquelles on a associé des LUN, Logical Unit Number).

L'intérêt du LVM est que l'on peut modifier la taille des volumes logiques sans perte de données (voire à chaud dans le cas d'un agrandissement sur ext2, ext3, ext4 et reiserFS). Le démontage préalable est tout de même recommandé pour ext2 et ext3.

Pour reiserFS, le rétrécissement est aussi possible à chaud.

Exemples[modifier | modifier le code]

Les logiciels libres LVM1, LVM2 et EVMS[1] sous Linux sont des exemples de Volume Managers, comme les logiciels propriétaires LVM de HP-UX ou Veritas Enterprise (VxVM) sous HP-UX et Solaris.

LVM2[modifier | modifier le code]

Les commandes usuelles de LVM2[modifier | modifier le code]

Avant d'utiliser LVM, il faut partitionner les disques (voir Outils de partitionnement) en type LVM.

Ensuite,

  • Pour les volumes physiques : pvcreate, pvscan, pvs, pvdisplay, pvremove, pvmove, pvchange
  • Pour les groupes de volume : vgcreate, vgdisplay, vgscan, vgs, vgck, vgremove
  • Pour les volumes logiques : lvcreate, lvmdiskscan, lvs, lvdisplay, lvremove, lvextend
  • Pour la sauvegarde/restauration de la structure LVM : vgcfgbackup, vgcfgrestore

Exemples concrets d'utilisation[modifier | modifier le code]

Changement d'un disque défectueux[modifier | modifier le code]

Votre serveur sous Linux contient deux disques durs qui partagent un volume groupe commun appelé ici henryvg (LVM) : l'un, nommé A, de 40 Go natif avec l'achat du PC, l'autre, B, de 80 Go acheté à la suite d'un besoin de place. En achetant ce nouveau disque, vous avez créé au moins une grande partition de type « 8e - Gestion par volumes logiques » ; soit /dev/hdb6 son nom. Tout comme la partition /dev/hda6 du disque A, cette partition hdb6 avait été incorporée (au moment de l'achat du second disque) au volume groupe henryvg.

L'un des deux disques donne des signes de défaillance et une commande fsck a créé, à répétition, un fichier lost+found sur un ou plusieurs volumes logiques. Un de vos disques est donc défaillant ; le noyau doit avoir signalé dans un fichier warnings (par exemple sous /var/log/kernel) de quel disque, hda ou hdb, il s'agit. Supposons qu'il s'agisse du disque B qu'on doit remplacer par un disque d'une taille au moins égale, nommé C.

L'intérêt d'une « gestion par volumes logiques » réside dans le fait que les temps de déconnexion du serveur peuvent être minimes. La procédure suivante peut être appliquée :

  • faire une sauvegarde des partitions de votre serveur (si vous avez une coupure de courant au cours de l'opération, vous risquez d'être embarrassé) ;
  • éteindre votre PC, puis ajouter le nouveau et troisième disque C, par exemple sur la nappe du DVD ;
  • allumer de nouveau votre serveur (il sera de nouveau opérationnel tout au long de l'opération), puis créer une ou plusieurs partitions sur /dev/hdc sous une forme analogue à celles du disque défectueux /dev/hdb. Soit /dev/hdc6 la grande partition de type 8e - LVM. Les commandes de lvm2 sous root sont alors les suivantes (beaucoup de distributions actuelles ont renommé lvm2 en lvm), la séquence et les paramètres restant identiques) :
  1. lvm2 pvcreate /dev/hdc6 # de manière à créer un descripteur de groupe de volume en tête de la partition /dev/hdc6 ;
  2. lvm2 vgextend henryvg /dev/hdc6 # de manière à incorporer la partition physique hdc6 au groupe de volume henryvg ;
  3. lvm2 pvmove /dev/hdb6 /dev/hdc6 # de manière à déplacer le contenu du « disque physique » B (et dans tous les volumes logiques créés sur votre serveur comme /usr, /var, /home etc.) sur les autres disques A et C. Cette étape peut être longue en fonction de la taille du disque, 45 minutes pour 40 Go par exemple ;
  4. lvm2 vgreduce henryvg /dev/hdb6 # de manière à ôter le disque B de la gestion LVM (henryvg). L'option --removemissing n'est à utiliser que dans le cas où on aurait retiré la partition /dev/hda6. Dans ce cas il ne faut pas mentionner /dev/hda6 sur la ligne de commande;
  5. lvm2 pvremove /dev/hdb6 # de manière à retirer /dev/hdb6 de la structure de henryvg (sinon il restera disponible) ;
  6. le disque B peut alors être enlevé lors d'un prochain redémarrage. Le disque C sera alors mis en place du disque défectueux B (même endroit sur la nappe par exemple, même paramétrage) avant de rallumer le PC. En effet, l'ensemble de la configuration ayant été transféré à C, le serveur fonctionnera à l'identique sans aucune autre intervention ;
  7. il conviendra néanmoins de restaurer les fichiers qui avaient été endommagés par le disque défectueux et qui se trouvent sous le répertoire lost+found de chacun des volumes logiques (partitions dans l'ancien jargon).
Augmentation de la taille d'un système de fichier à chaud[modifier | modifier le code]

Avec les derniers noyaux de Linux (2.6.22 au moins), il est possible d'augmenter à chaud la taille d'un système de fichier, sans même le démonter (du moins pour le système de fichier ext3). Soit ainsi un volume logique de nom /dev/henryvg/homelv monté sur /home. La commande df (disk free) vous donne sa taille actuelle :

df /home
Sys. de fich.         Tail. Occ. Disp. %Occ. Monté sur
/dev/mapper/henryvg-homelv
                      25G   20G  3,7G  85% /home

Notez qu'il est fréquent sur certains systèmes qu'un mapper réalloue /dev/henryvg/homelv en /dev/mapper/henryvg-homelv, mais il s'agit des mêmes noms. On souhaite augmenter le système de fichier de 25 Go à 30 Go. On vérifie la place disponible sur les disques (dans cet exemple, il y a deux disques physiques 'PV', mais un seul groupe volume 'VG') par l'une des deux commandes complémentaires:

# lvm2 pvs
  PV         VG      Fmt  Attr PSize  PFree
  /dev/sda6  henryvg lvm2 a--  70,47g 41,63g
  /dev/sdb6  henryvg lvm2 a--  70,47g 15,89g
# lvm2 vgs
  VG      #PV #LV #SN Attr   VSize   VFree
  henryvg   2   9   0 wz--n- 140,95g 57,52g

Il faut d'abord augmenter la taille du volume logique (LV) par la commande :

lvm2 lvextend -L30G /dev/henryvg/homelv

Et dans un deuxième temps augmenter la taille du système de fichier lui-même. S'il s'agit d'un système de fichier ext3, la commande est :

resize2fs -p /dev/henryvg/homelv

La taille s'ajustera automatiquement à celle du volume logique.

Réduction d'une partition[modifier | modifier le code]

Il faut tout d'abord réduire la taille du système de fichiers avant celle du volume logique. En fonction du système de fichiers, il faudra éventuellement démonter ce système de fichier (Ext3). Cela n'est parfois pas possible car il est occupé par des processus (cas du /, /usr). En général, il est plus rapide d'utiliser un disque de démarrage Linux comme Knoppix ou un Mandriva (il faut dans ce dernier cas aller jusqu'à l'étape d'une nouvelle installation et demander un partitionnement manuel) qui charge les modules lvm. Une fois ce système de fichier démonté et pour réduire un volume logique /dev/henryvg/homelv de 30 Go à 25 Go, il faut appliquer la commande :

resize2fs -p /dev/henryvg/homelv 25G

Il faut desactiver avant réduction (évite les pertes de données):

lvchange -an /dev/henryvg/homelv

Puis il faut réduire le volume logique par la commande (notez qu'il faut spécifier la taille) :

lvm2 lvreduce -L25G /dev/henryvg/homelv

Et activer :

lvchange -ay /dev/henryvg/homelv

Si tout se passe bien, on peut alors monter la partition par la commande :

mount -t ext3 /dev/henryvg/homelv /home

Bien évidemment, par précaution il faut avoir des sauvegardes de vos données avant de se lancer dans ce genre d'opération. A titre de précaution, il peut parfois s'avérer pratique de réduire le filesystem de façon plus importante (p. ex. 24G à la place de 25G), réduire la taille du volume logique et ensuite ré-étendre le filesystem à la taille exacte du nouveau volume logique et ce afin d'éviter des incohérences d'espaces entre le filesysteme et le volume logique.

Fichiers de configuration[modifier | modifier le code]

  • lvmtab (créé initialement par la commande vgscan).
  • lvm.conf

Divers[modifier | modifier le code]

L'identificateur d'une partition utilisée comme volume physique est 0x8E (hexadécimal) sous Linux et certains systèmes UNIX.

Notes[modifier | modifier le code]

  1. (en) EVMS

Liens externes[modifier | modifier le code]