Essai de traction

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Essai de traction terminé.

Un essai de traction est une expérience de physique qui permet de mesurer le degré de résistance à la rupture d'un matériau quelconque.

Certains objets manufacturés doivent avoir un minimum de solidité pour pouvoir supporter les charges, le poids et bien d'autres efforts. L´essai de traction permet de caractériser les matériaux, indépendamment de la forme de l'objet sollicité, ou la performance d'un assemblage mécanique. Comme tout essai mécanique, l'essai de traction reproduit une sollicitation simple, donc éloignée des sollicitations réelles, mais facilement maîtrisable et reproductible.

Cet essai ou expérience consiste à placer une petite barre du matériau à étudier entre les mâchoires d'une machine de traction qui tire sur la barre jusqu'à sa rupture. On enregistre l'allongement et la force appliquée, que l'on convertit ensuite en déformation et contrainte.

L'essai de traction donne plusieurs valeurs importantes :

Propriétés du matériau et grandeurs mesurées
Grandeur Propriété
E souplesse/rigidité :
souple si E est faible, rigidité si E est élevé
Re dureté :
mou si Re est faible, dur si Re est élevé
A ductilité, malléabilité :
fragile si A est faible, ductile et malléable si A est élevé

Éprouvette de traction[modifier | modifier le code]

Article connexe : éprouvette (matériau).

On peut effectuer les essais sur un barreau cylindrique ou de section rectangulaire (éprouvette plate). L'éprouvette cylindrique permet d'avoir un système symétrique et un système d'accrochage simple (par vissage), l'éprouvette plate permet de voir ce qui se passe sur une face : apparition de lignes de glissement, forme des cristallites (métallographie), mesure de texture par diffractométrie Xetc.

Les extrémités de l'éprouvette sont élargies, avec un congé, afin d'être sûr que la déformation plastique et la rupture auront lieu dans la partie centrale de l'éprouvette : les phénomènes de contact au niveau de la liaison à la machine sont complexes et ne représentent pas ce que l'on veut tester, on limite donc l'impact de l'essai sur ces zones. Les dimensions de l'éprouvette sont normalisées, ce qui n'interdit pas d'utiliser d'autres formes d'éprouvette si l'essai n'a pas besoin de répondre aux normes (par exemple dans le cadre de la recherche et du développement).

Les éprouvettes cylindriques sont habituellement obtenues par tournage. Les éprouvettes plates peuvent être obtenues par sciage d'une tôle puis fraisage.

Les éprouvettes sont fréquemment prélevées dans une pièce réelle ou un brut (lingot, tôle, profilé, etc.). Dans ce cas, l'endroit où l'éprouvette est prélevée, et la direction de prélèvement ont une importance : la matière est souvent hétérogène et anisotrope. Cela pose le problème de la représentativité de l'essai (échantillonnage).

Toutefois, l'essai n'a de sens que si l'éprouvette elle-même est homogène, ceci étant en général garanti par sa petite taille par rapport aux variations de propriétés de la matière. Par ailleurs, pour l'analyse du résultat, on considère en général qu'elle est isotrope.

Dans l'éprouvette, on s'intéresse à la partie calibrée, qui est la partie dans laquelle la section droite ne varie pas (partie de largeur uniforme). Au sein de cette partie calibrée, on trace deux repères « un peu à distance » des congés ; les efforts et la déformation dans cette partie entre repère est réputée uniforme (principe de Saint-Venant). La longueur de la partie calibrée est notée Lc. La longueur de la partie entre repères est notée L0, et est normalisée à :

\mathrm{L}_0 = k \times \sqrt{\mathrm{S}_0}

où :

  • k est un coefficient dépendant du matériau ; pour l'acier, k = 5,65 ;
  • S0 est l'aire de la section droite.

Dans la pratique, pour un éprouvette cylindrique en acier de diamètre d0, on a :

L0 = 5×d0.

Déroulement de l'essai[modifier | modifier le code]

Machine de traction Walter+Bai.
Déformation de l’éprouvette sous charge.

L'essai est pratiqué sur machine de traction. Une fois l'éprouvette en place, on applique une légère précharge afin d'être sûr que l'on n'a pas de jeu. Puis, on effectue un déplacement de la travée qui a pour effet d'étirer l'éprouvette, et on mesure l'effort généré par ce déplacement ; le mouvement peut se faire par un système de vis sans fin ou un piston hydraulique, l'effort se mesure par la déformation élastique de la travée ou, plus communément, par un capteur de force inséré dans la ligne de charge.

L'essai s'arrête à la rupture de l'éprouvette.

Courbe conventionnelle[modifier | modifier le code]

À partir du déplacement u de la travée, on calcule la déformation conventionnelle, appelée « extension » et notée e :

e = \frac{\Delta \mathrm{L}}{\mathrm{L}_0}

où :

  • L0 est la longueur entre repères ;
  • ΔL est l'allongement de l'éprouvette ; on néglige l'élongation des extrémités de l'éprouvette et l'on prend ΔL = u ;

et à partir de la force F, mesurée par un dynamomètre, on calcule la contrainte conventionnelle, appelée « charge unitaire » et notée R :

\mathrm{R} = \frac{\mathrm{F}}{\mathrm{S}_0}

où S0 est l'aire de la section droite dans la partie calibrée de l'éprouvette. On obtient ainsi la courbe conventionnelle R = ƒ(e).

Courbe rationnelle[modifier | modifier le code]

La courbe conventionnelle suffit pour la plupart des applications. mais si l'on s'intéresse de manière fine aux phénomènes aux grandes déformations, il faut tenir compte de la modification des dimensions de l'éprouvette. On définit pour cela :

  • la déformation longitudinale vraie, εI, prenant en compte le cumul des allongements :
    I = ldl soit \varepsilon_\mathrm{I} = \ln \frac{\mathrm{L}}{\mathrm{L}_0}
    où L est la longueur réelle de la partie entre repères, L = L0 + ΔL ;
  • la contrainte vraie, σ, calculée à partir de l'aire réelle de la section droite à l'instant considéré, S :
    \sigma = \frac{\mathrm{F}}{\mathrm{S}}.

La courbe σ = ƒ(εI) est appelée courbe rationnelle.

La variation de section est déterminée à partir du coefficient de Poisson ν.

Cas d'un matériau ductile[modifier | modifier le code]

Courbe de traction conventionnelle typique d'un matériau ductile.

Dans un premier temps, la déformation est élastique. La courbe de traction est donc une droite, la pente de cette droite donne le module de Young E.

À partir d'un certain allongement, la courbe s'infléchit : c'est le début de la déformation plastique. La transition peut être franche (rupture de pente), ce qui permet de déterminer facilement la limite d'élasticité Re. On a dans ce cas là en général un plateau avec une contrainte inférieure à la contrainte maximale dans le domaine élastique, correspondant au fait que les dislocations se sont libérées des atomes étrangers qui les épinglaient (voir Nuage de Cottrell). On définit alors une limite d'élasticité haute, ReH, qui est le maximum de la partie élastique, et une limite d'élasticité basse, ReL (low), correspondant au plateau.

Lorsque la rupture n'est pas franche — c'est notamment le cas des matériaux très ductiles —, on définit la limite d'élasticité conventionnelle comme étant la contrainte donnant 0,2 % de déformation résiduelle, Re 0,2 ; on peut aussi la définir pour d'autres valeurs de déformation résiduelle (par exemple Rp 0,1 pour 0,1 % de déformation).

La courbe de traction présente ensuite un maximum qui détermine la résistance à la traction conventionnelle Rm. L'allongement plastique à ce point est appelé allongement sous charge maximale et est noté Ag ; c'est la déformation résiduelle maximale que l'on peut imposer. On définit également l'allongement total sous charge maximale, Agt, qui inclut la déformation élastique. Le paramètre Ag renseigne sur la déformation maximale que l'on peut atteindre pour de la mise en forme, et Agt permet de régler l'appareil de mise en forme (puisque c'est une déformation totale que l'on impose).

À partir de ce point, la déformation est concentrée dans une zone, c'est la striction (« étranglement »). La force enregistrée diminue, puisque la section diminue dans la zone de striction.

La rupture a ensuite lieu dans la zone de striction. La charge unitaire R n'a pas de sens particulier à l'endroit de la rupture.

La courbe de traction rationnelle est, quant à elle, toujours croissante. La striction marque un point d'inflexion, puisque la section diminue plus vite que la force. On note que la contrainte vraie σ atteinte au moment de la rupture est très supérieure à la charge unitaire R.

Faciès de rupture typique pour un matériau ductile (alliage d'aluminium).

Le faciès de rupture de l'éprouvette présente une direction de rupture typique à 45° par rapport à l'axe de traction. C'est en effet la direction où la contrainte de cisaillement est maximale (voir Cercle de Mohr > Sollicitation uniaxiale).

Sur l'éprouvette rompue, on mesure :

  • la longueur ultime Lu, qui est la longueur entre repère mesurée en rapprochant les deux demies éprouvette rompues ;
  • la section ultime Su mesurée au plus étroit, dans la zone de striction.

On détermine ainsi :

  • l'allongement à la rupture \mathrm{A}\% = \frac{\mathrm{L_u} - \mathrm{L}_0}{\mathrm{L}_0} \times 100 ;
  • le coefficient de striction \mathrm{Z}\% = \frac{\mathrm{S_0} - \mathrm{S}_u}{\mathrm{S}_0} \times 100.

Cas d'un matériau fragile[modifier | modifier le code]

Éprouvette rompue d'un matériau fragile (fonte).

Dans le cas d'un matériau fragile, la rupture survient en fin de domaine élastique. La surface de rupture est globalement perpendiculaire à l'axe de traction. L'allongement à la rupture est nul ou très faible.

On ne peut déduire de la courbe que le module de Young E, et la résistance à la traction Rm.

Éprouvette entaillée[modifier | modifier le code]

Si l'on pratique une entaille sur une éprouvette, cela induit une concentration de contraintes, caractérisée par un coefficient Kt. On a donc une rupture à une charge unitaire apparente bien inférieure à Rm.

Les éprouvettes entaillées sont souvent utilisées dans les études de fatigue : cela accélère l'essai, qui peut comporter plusieurs millions de cycles, et on sait où va apparaître la fissure, ce qui permet de la suivre.

Résistance d'une pièce soumise à la traction[modifier | modifier le code]

Dans un mécanisme ou une structure, les pièces ne doivent pas rompre, ce qui impose que les contraintes en traction soient inférieures à Rm. Mais elle doivent par ailleurs conserver leurs dimensions, faute de quoi le mécanisme risque de ne plus fonctionner (voir Jeu (mécanique)).

La fabrication et le fonctionnement présentant des incertitudes, on applique un coefficient de sécurité s (ou parfois noté n), en général entre 2 et 5. On définit alors la limite pratique élastique Rpe :

\mathrm{R_{pe}} = \frac{\mathrm{R_e}}{s}.

La conception sur le cas de charge limite, ou état limite ultime (ELU), est donc validée si, pour toutes les structures en traction, on a :

σ ≤ Rpe.

Le coefficient de sécurité dépend des règles de l'art du domaine concerné ou bien de normes. De manière générale, on a :

  • pour un fonctionnement constant, sans à coup, dans un milieu maîtrisé (toutes les charges sont connues) et avec un matériau bien caractérisé : 1 ≤ s ≤ 2 ;
  • cas usuel : 2 ≤ s ≤ 3 ;
  • milieu mal maîtrisé (risque d'accident, charges mal connues), matériau mal caractérisé : 3 ≤ s ≤ 5.

Pour les matériaux fragiles, la résistance pratique à l'extension est fondée sur la résistance à la traction, le coefficient de sécurité est donc plus élevé :

\mathrm{R_{pe}} = \frac{\mathrm{R_m}}{s}.

Résistance d'une pièce dans le cas général[modifier | modifier le code]

L'essai de traction modélise une sollicitation de traction, et peut aussi servir de manière direct à une sollicitation de compression. Mais ces cas sont assez rares : bielle, élingue, chaîne, câble, tirant. Dans le cas général, la sollicitation est différente (cisaillement, flexion, torsion, sollicitation composée), et même si la pièce est soumise à une traction uniaxiale, la complexité de sa forme fait que localement, sur la pièce, on n'est pas dans un état de contrainte uniaxiale.

On peut toutefois extraire une contrainte équivalente σeqv à partir du tenseur des contraintes, comme la contrainte de von Mises ou de Tresca. La vérification à l'ELU devient alors :

σeqv ≤ Rpe.

Normes[modifier | modifier le code]

Les essais de traction doivent en général respecter les prescriptions de normes qui définissent la forme, les dimensions, les vitesses d'essai, l'étalonnage de la machine, l'exactitude des appareils, la définition des caractéristiques, les informations à indiquer dans un rapport d'essai. Pour les matériaux métalliques, la norme de référence est la EN ISO 6892-1 : Matériaux métalliques - Essai de traction - Partie 1 : méthode d'essai à température ambiante.

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Essai mécanique

Liens externes[modifier | modifier le code]