Aller au contenu

« Catastrophe nucléaire de Tchernobyl » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Biem (discuter | contributions)
Aucun résumé des modifications
Balise : Suppression des portails
Ligne 1 : Ligne 1 :
{{about|the 1986 nuclear plant accident in Ukraine||Chernobyl (disambiguation)}}
{{Infobox Événement
{{pp-semi-protected|small=yes}}
|charte =
{{Use dmy dates|date=September 2012}}
|entête=
{{Infobox news event
|nom = Catastrophe nucléaire de Tchernobyl
|image = Chernobylreactor.jpg
| image = [[File:Chernobyl Disaster.jpg|200px]]
| caption = The nuclear reactor after the disaster. Reactor 4 (center). Turbine building (lower left). Reactor 3 (center right).
|légende = Le réacteur {{n°|4}} et son sarcophage
| date = {{start date|1986|04|26|df=yes}}
|type = [[Accident nucléaire]]
| time = 01:23 ([[Moscow Time]] UTC+3)
|création =
| place = {{UKR}}, [[Pripyat (city)|Pripyat]], (former [[Ukrainian SSR]], [[Soviet Union]])
|édition =
|pays = URSS
|localisation = <span class="flagicon">[[Image:Flag of Ukrainian SSR.svg|border|20px|RSS d'Ukraine]]</span>[[Pripiat]], [[RSS d'Ukraine]]
|latitude = 51/23/22.39/N
|longitude = 30/05/56.93/E
|organisateur =
|date = {{date|26|avril|1986}}
|participant =
|fréquentation =
|site web =
|précèdent =
|suivant =
|géolocalisation = Europe/Oblast de Kiev/Ukraine
}}
}}
[[File:Chernobyl placement.svg|thumb|250px|Location of Chernobyl nuclear power plant]]
La '''catastrophe nucléaire de Tchernobyl''', également désignée comme l''''accident nucléaire de Tchernobyl''', est un [[accident nucléaire]] classé au niveau 7, le plus élevé, sur l'[[échelle internationale des événements nucléaires]] (INES) qui a eu lieu le {{date|26|avril|1986}} dans la [[Centrale nucléaire de Tchernobyl|centrale Lénine]], située à l'époque en [[RSS d'Ukraine]] en [[URSS]].
[[File:View of Chernobyl taken from Pripyat.JPG|thumb|The abandoned city of [[Pripyat (city)|Pripyat]] with Chernobyl plant in the distance]]
[[File:Pripyat, Ukraine, abandoned city.jpg|thumb|Abandoned housing blocks in Pripyat]]
The '''Chernobyl disaster''' ({{lang-uk|Чорнобильська катастрофа}}, ''Chornobylska Katastrofa'' – ''Chornobyl Catastrophe'') was a [[Catastrophic failure|catastrophic]] [[nuclear accident]] that occurred on 26 April 1986 at the [[Chernobyl Nuclear Power Plant]] in Ukraine (then officially [[Ukrainian SSR]]), which was under the direct jurisdiction of the central authorities of the [[Soviet Union]]. An explosion and fire released large quantities of radioactive particles into the atmosphere, which spread over much of Western USSR and [[Europe]].


The Chernobyl disaster is widely considered to have been the worst [[nuclear power]] plant accident in history, and is one of only two classified as a level 7 event on the [[International Nuclear Event Scale]] (the other being the [[Fukushima Daiichi nuclear disaster]] in 2011).<ref name="BBCWorse">{{cite web|last=Black |first=Richard |url=http://www.bbc.co.uk/news/science-environment-13048916 |title='&#39;Fukushima: As Bad as Chernobyl?'&#39; |publisher=BBC |date=12 April 2011 |accessdate=20 August 2011}}</ref> The battle to contain the contamination and avert a greater catastrophe ultimately involved over 500,000 workers and cost an estimated 18&nbsp;billion [[ruble]]s.<ref name="GorbachevBoC">Gorbachev, Mikhail (1996), interview in Johnson, Thomas, ''[http://www.youtube.com/watch?v=FdMLFJJyWnM The Battle of Chernobyl]'', [film], Discovery Channel, retrieved 30 October 2012.</ref> The official Soviet casualty count of 31 deaths has been disputed, and long-term effects such as cancers and deformities are still being accounted for.
== Résumé ==
L'accident a été provoqué par l'augmentation incontrôlée de la puissance du réacteur {{numéro|4}} conduisant à la [[Fusion du cœur d'un réacteur nucléaire|fusion du cœur]]. Cela a entraîné une explosion et la libération d'importantes quantités d’éléments radioactifs dans l’atmosphère, provoquant une très large [[contamination radioactive|contamination]] de l'environnement, et de nombreux décès et maladies survenus immédiatement ou à long terme du fait des [[Irradiation|irradiations]] ou [[contamination radioactive|contaminations]].


== Summary ==
Il s'agit du premier accident classé au niveau 7 sur l'[[échelle internationale des événements nucléaires]] (INES) (le second étant la [[Accidents nucléaires de Fukushima|catastrophe de Fukushima]] du 11 mars 2011), et il est considéré comme le plus grave accident nucléaire jamais répertorié.
The disaster began during a systems test on Saturday, 26 April 1986 at reactor number four of the Chernobyl plant, which is near the city of [[Pripyat]] and in proximity to the administrative border with [[Belarusian SSR|Belarus]] and the [[Dnieper]] river. There was a sudden and unexpected power surge, and when an emergency shutdown was attempted, an exponentially larger spike in power output occurred, which led to a reactor vessel rupture and a series of steam explosions. These events exposed the [[graphite]] [[neutron moderator|moderator]] of the reactor to air, causing it to ignite.<ref>{{cite web|url=http://www.iaea.org/newscenter/features/chernobyl-15/cherno-faq.shtml|title=Frequently Asked Chernobyl Questions|date=May 2005|accessdate=23 March 2011|publisher=International Atomic Energy Agency – Division of Public Information}}</ref> The resulting fire sent a plume of highly radioactive [[fallout]] into the atmosphere and over an extensive geographical area, including Pripyat. The plume drifted over large parts of the western [[Soviet Union]] and Europe. From 1986 to 2000, 350,400 people were evacuated and resettled from the most severely contaminated areas of Belarus, [[Russian SFSR|Russia]], and [[Ukrainian SSR|Ukraine]].<ref>{{cite web
|url=http://www.unicef.org/newsline/chernobylreport.pdf |format=PDF |title=Table 2.2 Number of people affected by the Chernobyl accident (to December 2000) |work=The Human Consequences of the Chernobyl Nuclear Accident |page=32 |publisher=UNDP and UNICEF |date=22 January 2002 |accessdate=17 September 2010 }}</ref><ref>{{cite web |url=http://www.unicef.org/newsline/chernobylreport.pdf |format=PDF |title=Table 5.3: Evacuated and resettled people |work=The Human Consequences of the Chernobyl Nuclear Accident |page=66 |publisher=UNDP and UNICEF |date=22 January 2002 |accessdate=17 September 2010 }}</ref> According to official post-Soviet data,<ref>{{cite book |title=International Chernobyl Portal chernobyl.info |last1=ICRIN Project |year=2011 |url=http://chernobyl.info/Default.aspx?tabid=294 |accessdate=2011}}</ref><ref name="IAEA">{{cite book |title= Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience. Report of the Chernobyl Forum Expert Group ‘Environment’ |publisher= International Atomic Energy Agency|year=2006 |location=Vienna |isbn=92-0-114705-8<!--NOTE:fails checksum test but it is the isbn published by the source --> |page= 180 |url=http://www-pub.iaea.org/MTCD/publications/PDF/Pub1239_web.pdf |accessdate=13 March 2011}}</ref> about 60% of the fallout landed in Belarus.


The accident raised concerns about the [[nuclear safety|safety]] of the Soviet nuclear power industry, as well as nuclear power in general, slowing its expansion for a number of years and forcing the Soviet government to become less secretive about its procedures.<ref name=Kagarlitsky>{{cite book |title=The New Detente: Rethinking East-West Relations |chapter=Perestroika: The Dialectic of Change|last=Kagarlitsky|first=Boris|editor=[[Mary Kaldor]], Gerald Holden, [[Richard A. Falk]]|year=1989|publisher=United Nations University Press|isbn=0-86091-962-5}}</ref><ref name=Kagarlitsky group=notes>"No one believed the first newspaper reports, which patently understated the scale of the catastrophe and often contradicted one another. The confidence of readers was re-established only after the press was allowed to examine the events in detail without the original censorship restrictions. The policy of openness ([[glasnost]]) and 'uncompromising criticism' of outmoded arrangements had been proclaimed back at the 27th Congress (of [[Communist Party of Soviet Union|KPSS]]), but it was only in the tragic days following the Chernobyl disaster that glasnost began to change from an official slogan into an everyday practice. The truth about Chernobyl that eventually hit the newspapers opened the way to a more truthful examination of other social problems. More and more articles were written about drug abuse, crime, corruption and the mistakes of leaders of various ranks. A wave of 'bad news' swept over the readers in 1986–87, shaking the consciousness of society. Many were horrified to find out about the numerous calamities of which they had previously had no idea. It often seemed to people that there were many more outrages in the epoch of [[perestroika]] than before although, in fact, they had simply not been informed about them previously." -Kagarlitsky pp. 333–334</ref> The government coverup of the Chernobyl disaster was a "catalyst" for [[glasnost]], which "paved the way for reforms leading to the Soviet collapse".<ref>Associated Press, 24 April 2006, at [http://www.msnbc.msn.com/id/12403612/ns/world_news-europe/t/chernobyl-cover-up-catalyst-glasnost/ msnbc.msn.com]</ref>
La centrale nucléaire est située sur un affluent du [[Dniepr]] à environ {{Unité|15|kilomètres}} de [[Tchernobyl]] ([[Ukraine]]), et à {{Unité|110|kilomètres}} de la capitale [[Kiev]], près de la frontière avec la [[Biélorussie]].


Russia, Ukraine, and Belarus have been burdened with the continuing and substantial [[decontamination]] and health care costs of the Chernobyl accident. A report by the International Atomic Energy Agency examines the environmental consequences of the accident.<ref name="IAEA"/> Another [[UN]] agency, [[UNSCEAR]], has estimated a global [[collective dose]] of radiation exposure from the accident "equivalent on average to 21 additional days of world exposure to natural [[background radiation]]"; individual doses were far higher than the global mean among those most exposed, including 530,000 local recovery workers who averaged an [[Effective dose equivalent|effective dose]] equivalent to an extra 50 years of typical natural background radiation exposure each.<ref>{{cite web |url= http://www.iaea.org/Publications/Magazines/Bulletin/Bull383/boxp6.html |title=Assessing the Chernobyl Consequences |publisher=International Atomic Energy Agency}}</ref><ref name = UNSCEAR_2008_D>{{cite web |url= http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf |title=UNSCEAR 2008 Report to the General Assembly, Annex D |publisher=United Nations Scientific Committee on the Effects of Atomic Radiation |year=2008}}</ref><ref name=UNSCEAR_GA>{{cite web |url= http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_GA_Report_corr2.pdf |title=UNSCEAR 2008 Report to the General Assembly |publisher=United Nations Scientific Committee on the Effects of Atomic Radiation |year=2008}}</ref> Estimates of the number of deaths that will eventually result from the accident vary enormously; disparities reflect both the lack of solid scientific data and the different methodologies used to quantify mortality – whether the discussion is confined to specific geographical areas or extends worldwide, and whether the deaths are immediate, short term, or long term.
L'accident de Tchernobyl est la conséquence de dysfonctionnements importants et multiples :
* un réacteur mal conçu, naturellement instable dans certaines situations et sans [[enceinte de confinement]] ;
* un réacteur mal exploité, sur lequel des essais hasardeux ont été conduits ;
* un contrôle de la sûreté par les pouvoirs publics inexistant ;
* une gestion inadaptée des conséquences de l'accident<ref>D'après le [http://www.industrie.gouv.fr/energie/nucleair/epr_1_4.htm ministère de l'industrie], « Le régime d'assurance et d'indemnisation en cas d'accident nucléaire, » DGEMP, avril 2004.</ref>.


[[Deaths due to the Chernobyl disaster|Thirty one deaths]] are directly attributed to the accident, all among the reactor staff and emergency workers.<ref name="Hallenbeck 1994 15">{{cite book | title = Radiation Protection | last = Hallenbeck | first = William H | isbn = 0-87371-996-4 | publisher = CRC Press | year = 1994 | quote = Reported thus far are 237 cases of acute radiation sickness and 31 deaths. | page = 15}}</ref> An UNSCEAR report places the total confirmed deaths from radiation at 64 as of 2008. The [[Chernobyl Forum]] estimates that the eventual death toll could reach 4,000 among those exposed to the highest levels of radiation (200,000 emergency workers, 116,000 evacuees and 270,000 residents of the most contaminated areas); this figure includes some 50 emergency workers who died of acute radiation syndrome, nine children who died of thyroid cancer and an estimated total of 3940 deaths from radiation-induced cancer and leukemia.<ref>{{cite web|title=Chernobyl: the true scale of the accident|url=http://www.who.int/mediacentre/news/releases/2005/pr38/en/index.html|work=Chernobyl's Legacy: Health, Environmental and Socio-Economic Impacts|accessdate=15 April 2011}}</ref>
Les [[Conséquences sanitaires de la catastrophe de Tchernobyl|conséquences de la catastrophe de Tchernobyl]], controversées, sont importantes aussi bien au plan sanitaire, écologique, économique que politique. Plus de {{nombre|200000|personnes}} ont été définitivement évacuées.


The [[Union of Concerned Scientists]] estimates that, among the hundreds of millions of people living in broader geographical areas, there will be 50,000 excess cancer cases resulting in 25,000 excess cancer deaths.<ref>[http://www.ucsusa.org/news/press_release/chernobyl-cancer-death-toll-0536.html Chernobyl Cancer Death Toll Estimate More Than Six Times Higher Than the 4,000 Frequently Cited, According to a New UCS Analysis] Note: ''"The UCS analysis is based on radiological data provided by UNSCEAR, and is consistent with the findings of the Chernobyl Forum and other researchers."''</ref> For this broader group, the 2006 [[TORCH report]] predicts 30,000 to 60,000 excess cancer deaths,<ref name=torch>{{cite web|url=http://www.chernobylreport.org/?p=summary |title=Torch: The Other Report On Chernobyl—executive summary|accessdate=20 August 2011|publisher=[[European Greens]] and UK scientists Ian Fairlie PhD and David Sumner – Chernobylreport.org|date=April 2006}}</ref> and a [[Greenpeace]] report puts the figure at 200,000 or more.<ref>http://www.greenpeace.org/international/Global/international/planet-2/report/2006/4/chernobylhealthreport.pdf</ref> The Russian publication [[Chernobyl: Consequences of the Catastrophe for People and the Environment|''Chernobyl'']] concludes that among the billions of people worldwide who were exposed to radioactive contamination from the disaster, nearly a million premature cancer deaths occurred between 1986 and 2004.<ref name="Alexey2009">{{cite book |author1=Alexey V. Yablokov |author2=Vassily B. Nesterenko |author3=Alexey V. Nesterenko |title=[[Chernobyl: Consequences of the Catastrophe for People and the Environment]] (Annals of the [[New York Academy of Sciences]]) |publisher= [[Wiley-Blackwell]]|year=2009 |isbn=978-1-57331-757-3 |edition=paperback}}</ref>
Le rapport de l'[[Agence internationale de l'énergie atomique]] (AIEA) établi en 2005 recense près de {{nombre|30|morts}} par [[syndrome d'irradiation aiguë]] directement attribuables à l'accident et estime que 5 % des décès de [[liquidateurs]] seraient liés à la catastrophe. Dans les populations locales, {{nombre|4000|[[cancer]]s}} de la [[thyroïde]] ont été diagnostiqués entre la catastrophe et 2002, dont la grande majorité est attribuée à la catastrophe. De plus, ce rapport estime que le nombre de morts supplémentaires par [[cancer]] dans ces populations (estimé à {{nombre|4000|morts}} d'après les modèles de [[radioprotection]]) est trop faible par rapport à la mortalité naturelle ({{nombre|100000|morts}}, soit 4 % d'accroissement) pour être détectable par les outils épidémiologiques disponibles<ref name="IAEA"> [http://www.iaea.org/Publications/Booklets/Chernobyl/chernobyl.pdf Chernobyl’s Legacy: Health, Environmental and Socio-Economic Impacts]. The Chernobyl Forum: 2003–2005 - Second revised version. IAEA Division of Public Information</ref>.

== Accident ==
[[File:Chernobyl model.jpg|thumb|A model of the Chernobyl reactor after the lid of the reactor chamber blew off. [[Ukrainian National Chornobyl Museum]], [[Kiev, Ukraine]].]]
On 26 April 1986, at 01:23 ([[Moscow Time|UTC+3]]), reactor four suffered a catastrophic power increase, leading to explosions in its core. This dispersed large quantities of radioactive fuel and core materials into the atmosphere<ref name="MedvedevZ">{{Cite book|last=Medvedev|first=Zhores A.|authorlink=Zhores A. Medvedev|title=The Legacy of Chernobyl|publisher=W. W. Norton & Company |year=1990|isbn=978-0-393-30814-3 |edition=paperback |note=First American edition published in 1990}}</ref>{{rp|73}} and ignited the combustible [[nuclear graphite|graphite]] moderator. The burning graphite moderator increased the emission of [[hot particle|radioactive particles]], carried by the smoke, as the reactor had not been encased by any kind of hard [[containment building|containment vessel]]. The accident occurred during an experiment scheduled to test a potential safety [[Nuclear safety systems#Emergency core cooling system|emergency core cooling]] feature, which took place during a normal shutdown procedure.

=== Steam turbine tests ===
An inactive nuclear reactor continues to generate a significant amount of residual [[decay heat]]. In an initial shut-down state (for example, following an emergency [[SCRAM]]) the reactor produces around 7 percent of its total thermal output and requires cooling to avoid [[nuclear meltdown|core damage]]. [[RBMK]] reactors, like those at Chernobyl, use water as coolant.<ref>{{Cite document|title=DOE Fundamentals Handbook&nbsp;– Nuclear physics and reactor theory| volume = 1 of 2, module 1 | page = 61|publisher=United States Department of Energy |date=January 1996|url=http://www.hss.doe.gov/nuclearsafety/ns/techstds/standard/hdbk1019/h1019v1.pdf#page=85.5 |format= PDF| accessdate =3 June 2010 | nopp = DOE–HDBK-1019/1-93 / Available to the public from the National Technical Information Services, U.S. Department of Commerce, 5285 Port Royal, Springfield, VA 22161.|author1=<Please add first missing authors to populate metadata.>}}{{dead link|date=August 2011}}</ref><ref>{{cite web|title= Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition (NUREG-0800)|work=United States Nuclear Regulatory Commission|date= May 2010 | url = http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0800/|accessdate=2 June 2010}}</ref> Reactor 4 at Chernobyl consisted of about 1,600 individual fuel channels; each required a coolant flow of 28 metric tons ({{convert|28000|l|gal|disp=/|sp=us}}) per hour.<ref name="MedvedevZ"/>{{rp|7}}

Since cooling pumps require electricity to cool a reactor after a SCRAM, in the event of a power grid failure, Chernobyl's reactors had three backup [[diesel generator]]s; these could start up in 15 seconds, but took 60–75 seconds<ref name="MedvedevZ"/>{{rp|15}} to attain full speed and reach the 5.5{{nbhyph}}[[megawatt]] (MW) output required to run one main pump.<ref name="MedvedevZ"/>{{rp|30}}

To solve this one-minute gap, considered an unacceptable safety risk, it had been theorised that [[rotational energy]] from the [[steam turbine]] (as it wound down under residual steam pressure) could be used to generate the required electrical power. Analysis indicated that this residual momentum and steam pressure might be sufficient to run the coolant pumps for 45 seconds,<ref name="MedvedevZ"/>{{rp|16}} bridging the gap between an external power failure and the full availability of the emergency generators.<ref name="NV Karpan: 312–13">NV Karpan: 312–13.</ref>

This capability still needed to be confirmed experimentally, and previous tests had ended unsuccessfully. An initial test carried out in 1982 showed that the [[excitation (magnetic)|excitation]] voltage of the turbine-generator was insufficient; it did not maintain the desired [[magnetic field]] after the turbine trip. The system was modified, and the test was repeated in 1984 but again proved unsuccessful. In 1985, the tests were attempted a third time but also yielded negative results. The test procedure was to be repeated again in 1986, and it was scheduled to take place during the maintenance shutdown of Reactor Four.<ref name="NV Karpan: 312–13"/>

The test focused on the switching sequences of the electrical supplies for the reactor. The test procedure was to begin with an automatic emergency shutdown. No detrimental effect on the safety of the reactor was anticipated, so the test program was not formally coordinated with either the chief designer of the reactor (NIKIET) or the scientific manager. Instead, it was approved only by the director of the plant (and even this approval was not consistent with established procedures).<ref name=insag7/>

According to the test parameters, the thermal output of the reactor should have been ''no lower'' than 700&nbsp;MW at the start of the experiment. If test conditions had been as planned, the procedure would almost certainly have been carried out safely; the eventual disaster resulted from attempts to boost the reactor output once the experiment had been started, which was inconsistent with approved procedure.<ref name=insag7/>

The Chernobyl power plant had been in operation for two years without the capability to ride through the first 60–75 seconds of a total loss of electric power, and thus lacked an important safety feature. The station managers presumably wished to correct this at the first opportunity, which may explain why they continued the test even when serious problems arose, and why the requisite approval for the test had not been sought from the Soviet nuclear oversight regulator (even though there was a representative at the complex of 4 reactors).<ref name="Medvedev Z" group= notes>"The mere fact that the operators were carrying out an experiment that had not been approved by higher officials indicates that something was wrong with the chain of command. The State Committee on Safety in the Atomic Power Industry is permanently represented at the Chernobyl station. Yet the engineers and experts in that office were not informed about the program. In part, the tragedy was the product of administrative anarchy or the attempt to keep everything secret." Medvedev, Z., pp. 18–20</ref>{{rp|18–20}}

The experimental procedure was intended to run as follows:
# The reactor was to be running at a low power level, between 700 MW and 800 MW.
# The steam-turbine generator was to be run up to full speed.
# When these conditions were achieved, the steam supply for the turbine generator was to be closed off.
# Turbine generator performance was to be recorded to determine whether it could provide the bridging power for coolant pumps until the emergency diesel generators were sequenced to start and provide power to the cooling pumps automatically.
# After the emergency generators reached normal operating speed and voltage, the turbine generator would be allowed to freewheel down.

=== Conditions prior to the accident ===
[[File:RBMK en.svg|thumb|350px|A schematic diagram of the reactor]]
The conditions to run the test were established before the day shift of 25 April 1986. The day shift workers had been instructed in advance and were familiar with the established procedures. A special team of [[electrical engineer]]s was present to test the new voltage regulating system.<ref>A.S.Djatlov:30</ref> As planned, a gradual reduction in the output of the power unit was begun at 01:06 on 25 April, and the power level had reached 50% of its nominal 3200&nbsp;MW thermal level by the beginning of the day shift.

At this point, another regional power station unexpectedly went offline, and the [[Kiev]] [[electrical grid]] controller requested that the further reduction of Chernobyl's output be postponed, as power was needed to satisfy the peak evening demand. The Chernobyl plant director agreed, and postponed the test.

At 23:04, the Kiev grid controller allowed the reactor shut-down to resume. This delay had some serious consequences: the day shift had long since departed, the evening shift was also preparing to leave, and the night shift would not take over until midnight, <!-- no such thing as either 12&nbsp;am or 12&nbsp;pm: http://tf.nist.gov/general/misc.htm -->well into the job. According to plan, the test should have been finished during the day shift, and the night shift would only have had to maintain decay heat cooling systems in an otherwise shut down plant.<ref name="MedvedevZ"/>{{rp|36–8}}

The night shift had very limited time to prepare for and carry out the experiment. A further rapid reduction in the power level from 50% was executed during the shift change-over. [[Alexander Akimov]] was chief of the night shift, and Leonid Toptunov was the operator responsible for the reactor's operational regimen, including the movement of the control rods. Toptunov was a young engineer who had worked independently as a senior engineer for approximately three months.<ref name="MedvedevZ"/>{{rp|36–8}}

The test plan called for a gradual reduction in power output from reactor 4 to a thermal level of 700–1000&nbsp;MW.<ref>{{cite web |language=Russian |url=http://rrc2.narod.ru/book/app7.html |title=The official program of the test}}</ref> An output of 700&nbsp;MW was reached at 00:05 on 26 April. However, due to the natural production of [[xenon-135]], a [[neutron absorber]], core power continued to decrease without further operator action—a process known as [[Iodine pit|reactor poisoning]]. As the reactor power output dropped further, to approximately 500&nbsp;MW, Toptunov mistakenly inserted the control rods too far—the exact circumstances leading to this are unknown because both Akimov and Toptunov were killed during the later explosion. This combination of factors rendered the reactor in an unintended near-[[shutdown (nuclear reactor)|shutdown]] state, with a power output of 30&nbsp;MW thermal or less.

The reactor was now only producing around 5&nbsp;percent of the minimum initial power level established as safe for the test.<ref name=insag7/>{{rp|73}} Control-room personnel consequently made the decision to restore power by extracting the majority of the reactor control rods to their upper limits.<ref>A.S.Djatlov:31</ref> Several minutes elapsed between their extraction and the point that the power output began to increase and subsequently stabilize at 160–200&nbsp;MW (thermal), a much smaller value than the planned 700&nbsp;MW. The rapid reduction in the power during the initial shutdown, and the subsequent operation at a level of less than 200&nbsp;MW led to increased [[reactor poisoning|poisoning]] of the [[reactor core]] by the accumulation of xenon-135.<ref name="nf">{{cite web | url=http://nuclearfissionary.com/2010/03/03/what-happened-at-chernobyl/ | title=What Happened at Chernobyl? | accessdate=12 January 2011 | publisher=Nuclear Fissionary}}</ref><ref>The accumulation of Xenon-135 in the core is burned out by neutrons. Thus, higher power settings, associated with higher [[neutron flux]], burn the xenon out more quickly. Conversely, low power settings result in the accumulation of xenon.</ref> This restricted any further rise of reactor power, and made it necessary to extract additional control rods from the reactor core in order to counteract the poisoning.

[[File:Kiev-UkrainianNationalChernobylMuseum 08.jpg|thumb|Chernobyl plant model on display at Kiev [[Ukrainian National Chernobyl Museum]]]]
The operation of the reactor at the low power level and high poisoning level, was accompanied by unstable core temperature and coolant flow, and possibly by instability of neutron flux. Various alarms started going off at this point. The control room received repeated emergency signals regarding the levels in the steam/water separator drums, and large excursions or variations in the flow rate of feed water, as well as from [[relief valve]]s opened to relieve excess steam into a [[condenser (heat transfer)|turbine condenser]], and from the neutron power controller. In the period between 00:35 and 00:45, emergency alarm signals concerning [[thermal-hydraulic]] parameters were ignored, apparently to preserve the reactor power level. Emergency signals from the reactor emergency protection system (EPS-5) triggered a trip that turned off both turbine-generators.<!-- First: No fact of "turning off the turbogenerators" were registered, this "turning off" was pre-overridden by operators (they lowered the threshold of triggering). Second: EPS-5 (AZ-5) is the system that scrams a reactor. The system whose signals were overridden was in fact the AZ-2 (EPS-2). This system, among other actions, cuts off the steam feed to turbogenerators in case of abnormal water level in separator drums. Third: One of two turbogenerators was already turned off by 23:00&nbsp;– thus no need to refer to the other one in the plural. Fourth: Even the source specified below contains no assertions about "turning off turbogenerators", nor about triggering EPS-5 at this time. --><ref>[http://accidont.ru/expert.html The information on accident at the Chernobyl NPP and its consequences, prepared for IAEA], Atomic Energy, v. 61, 1986, p. 308–320.</ref>

After a while, a more or less stable state at a power level of 200&nbsp;MW was achieved, and preparation for the experiment continued. As part of the test plan, extra water pumps were activated at 01:05 on 26 April, increasing the water flow. The increased coolant flow rate through the reactor produced an increase in the inlet coolant temperature of the reactor core, which now more closely approached the [[nucleate boiling]] temperature of water, reducing the [[factor of safety|safety margin]].

The flow exceeded the allowed limit at 01:19. At the same time, the extra water flow lowered the overall core temperature and reduced the existing [[void coefficient|steam voids]] in the core.<ref>The RBMK is a boiling water reactor, so in-core boiling is normal at higher power levels. The RBMK design has a negative void coefficient above 700&nbsp;MW.</ref> Since water also absorbs neutrons (and the higher density of liquid water makes it a better absorber than steam), turning on additional pumps decreased the reactor power further still. This prompted the operators to remove the manual control rods further to maintain power.<ref>[http://www.physiciansofchernobyl.org.ua/rus/books/Karpan.html N.V.Karpan]:349</ref>

All these actions led to an extremely unstable reactor configuration. Nearly all of the control rods were removed, which would limit the value of the safety rods when initially inserted in a SCRAM condition. Further, the reactor coolant had reduced boiling, but had limited margin to boiling, so any power excursion would produce boiling, reducing [[neutron absorption]] by the water. The reactor was in an unstable configuration that was clearly outside the safe operating envelope established by the designers.

=== Experiment and explosion ===
[[File:Chernobyl burning-aerial view of core.jpg|thumb|left|upright|Aerial view of the damaged core on 3 May 1986. Roof of the turbine hall is damaged (image center). Roof of the adjacent reactor 3 (image lower left) shows minor fire damage.]]
[[File:Ejected graphite from Chernobyl core.jpg|thumb|Lumps of [[graphite]] [[Neutron moderator|moderator]] ejected from the core. The largest lump shows an intact [[control rod]] channel.]]

At 1:23:04&nbsp;a.m. the experiment began. Four (of eight total) Main Circulating Pumps (MCP) were active. The steam to the turbines was shut off, and a run down of the turbine generator began. The diesel generator started and sequentially picked up loads, which was complete by 01:23:43. During this period, the power for the four MCPs was supplied by the turbine generator as it coasted down. As the [[momentum]] of the turbine generator decreased, the water flow rate decreased, leading to increased formation of steam voids (bubbles) in the core.

Because of the positive void coefficient of the RBMK reactor at low reactor power levels, it was now primed to embark on a [[positive feedback]] loop, in which the formation of steam voids reduced the ability of the liquid water [[coolant]] to absorb neutrons, which in turn increased the reactor's power output. This caused yet more water to flash into steam, giving yet a further power increase. However, during almost the entire period of the experiment the automatic control system successfully counteracted this positive feedback, continuously inserting [[control rod]]s into the reactor core to limit the power rise.

At 1:23:40, as recorded by the [[SKALA]] centralized control system, an emergency shutdown of the reactor, which inadvertently triggered the explosion, was initiated. The SCRAM was started when the EPS-5 button (also known as the AZ-5 button) of the reactor emergency protection system was pressed: this fully inserted all control rods, including the manual control rods that had been incautiously withdrawn earlier. The reason why the EPS-5 button was pressed is not known, whether it was done as an emergency measure or simply as a routine method of shutting down the reactor upon completion of the experiment.

There is a view that the SCRAM may have been ordered as a response to the unexpected rapid power increase, although there is no recorded data conclusively proving this. Some have suggested that the button was not pressed, and instead the signal was automatically produced by the emergency protection system; however, the SKALA clearly registered a manual SCRAM signal. In spite of this, the question as to when or even whether the EPS-5 button was pressed has been the subject of debate. There are assertions that the pressure was caused by the rapid power acceleration at the start, and allegations that the button was not pressed until the reactor began to self-destruct but others assert that it happened earlier and in calm conditions.<ref>{{cite book |language=Russian |author1= E. O. Adamov |author2=Yu. M. Cherkashov, et al. |url= http://accidont.ru/book.html |title= Channel Nuclear Power Reactor RBMK |location=Moscow |publisher= GUP NIKIET |year=2006 |isbn= 5-98706-018-4 |edition= Hardcover |display-authors=2}}</ref>{{rp|578}}<ref>{{cite book |language= Russian |url= http://rrc2.narod.ru/book/gl4.html | first = Anatoly |last= Dyatlov|authorlink=Anatoly Dyatlov | title = Chernobyl. How did it happen? |note=Chapter&nbsp;4}}</ref>

After the EPS-5 button was pressed, the insertion of control rods into the reactor core began. The control rod insertion mechanism moved the rods at 0.4&nbsp;m/s, so that the rods took 18 to 20&nbsp;seconds to travel the full height of the [[nuclear reactor core|core]], about 7 meters. A bigger problem was a flawed graphite-tip control rod design, which initially displaced coolant before inserting neutron-absorbing material to slow the reaction. As a result, the SCRAM actually increased the reaction rate in the lower half of the core.

A few seconds after the start of the SCRAM, a massive power spike occurred, the core overheated, and seconds later this overheating resulted in the initial explosion. Some of the [[fuel rod]]s fractured, blocking the control rod columns and causing the control rods to become stuck at one-third insertion. Within three seconds the reactor output rose above 530&nbsp;MW.<ref name="MedvedevZ"/>{{rp|31}}

The subsequent course of events was not registered by instruments: it is known only as a result of mathematical simulation. Apparently, a great rise in power first caused an increase in fuel temperature and massive steam buildup, leading to a rapid increase in steam pressure. This destroyed fuel elements and ruptured the channels in which these elements were located.<ref>{{cite web| language =Russian |url=http://www.reactors.narod.ru/pub/chern_2/chern_2.htm |title=Chernobyl as it was – 2}}</ref>

Then, according to some estimations, the reactor jumped to around 30&nbsp;GW thermal, ten times the normal operational output. The last reading on the control panel was 33 GW. It was not possible to reconstruct the precise sequence of the processes that led to the destruction of the reactor and the power unit building, but a [[steam explosion]], like the explosion of a [[steam boiler]] from excess vapor pressure, appears to have been the next event. There is a general understanding that it was steam from the wrecked channels entering the reactor's inner structure that caused the destruction of the reactor casing, tearing off and lifting the 2,000-ton upper plate, to which the entire reactor assembly is fastened. Apparently, this was the first explosion that many heard.<ref>{{cite book |language= Russian |url=http://accidont.ru/Davlet.html |first = RI | last=Davletbaev |title=Last shift Chernobyl. Ten years later. Inevitability or chance? |location=Moscow | publisher=Energoatomizdat|year= 1995 |isbn= 5-283-03618-9}}</ref>{{rp|366}} This explosion ruptured further fuel channels, and as a result the remaining coolant flashed to steam and escaped the reactor core. The total water loss in combination with a high positive void coefficient further increased the reactor power.

A second, more powerful explosion occurred about two or three seconds after the first; evidence indicates that the second explosion was from the core itself undergoing [[criticality accident|runaway criticality]].<ref name= Pakhomov2009>{{Cite journal|last=Pakhomov|first=Sergey A|coauthors= Yuri V. Dubasov|title=Estimation of Explosion Energy Yield at Chernobyl NPP Accident|journal = Pure and Applied Geophysics|publisher= Springerlink.com |date=16 December 2009|doi = 10.1007/s00024-009-0029-9|volume=167|page=575|issue=4–5}}</ref> The nuclear excursion dispersed the core and effectively terminated the [[nuclear chain reaction]]. However, a graphite fire was burning by now<!--can you find earlier evidence of a graphite fire in this article?-->, greatly contributing to the spread of [[radioactive fallout|radioactive material]] and the [[radioactive contamination|contamination]] of outlying areas.<ref>{{cite web|url=http://www.nea.fr/html/rp/chernobyl/c01.html |title=Chernobyl: Assessment of Radiological and Health Impact (Chapter 1) |publisher=Nuclear Energy Agency|accessdate=20 August 2011}}</ref>

There were initially several hypotheses about the nature of the second explosion. One view was, "the second explosion was caused by the [[hydrogen]] which had been produced either by the overheated steam-[[zircaloy|zirconium]] reaction or by the [[Syngas|reaction of red-hot graphite with steam]] that produced hydrogen and [[carbon monoxide]]." Another hypothesis was that the second explosion was a thermal explosion of the reactor as a result of the uncontrollable escape of [[fast neutron]]s caused by the complete water loss in the reactor core.<ref>{{cite book | language=Russian |last=Checherov |first=K.P. |title= Development of ideas about reasons and processes of emergency on the 4-th unit of Chernobyl NPP 26.04.1986 | publisher= International conference "Shelter-98" | location = Slavutich, Ukraine | date = 25–7 November 1998}}</ref> A third hypothesis was that the explosion was caused by steam. According to this version, the flow of steam and the steam pressure caused all the destruction that followed the ejection from the shaft of a substantial part of the graphite and fuel.

{{quote|According to observers outside Unit 4, burning lumps of material and sparks shot into the air above the reactor. Some of them fell on to the roof of the machine hall and started a fire. About 25 percent of the red-hot graphite blocks and overheated material from the fuel channels was ejected.... Parts of the graphite blocks and fuel channels were out of the reactor building.... As a result of the damage to the building an airflow through the core was established by the high temperature of the core. The air ignited the hot graphite and started a graphite fire.<ref name="MedvedevZ"/>{{rp|32}}}}

However, the ratio of [[isotopes of xenon|xenon radioisotopes]] released during the event indicates that the second explosion could be a nuclear power transient. This nuclear transient released 40&nbsp;GJ of energy, the equivalent of about ten tons of [[TNT equivalent|TNT]]. The analysis indicates that the nuclear excursion was limited to a small portion of the core.<ref name= Pakhomov2009/>

Contrary to safety regulations, [[bitumen]], a combustible material, had been used in the construction of the roof of the reactor building and the turbine hall. Ejected material ignited at least five fires on the roof of the adjacent reactor 3, which was still operating. It was imperative to put those fires out and protect the cooling systems of reactor 3.<ref name="MedvedevZ"/>{{rp|42}} Inside reactor 3, the chief of the night shift, Yuri Bagdasarov, wanted to shut down the reactor immediately, but chief engineer Nikolai Fomin would not allow this. The operators were given [[respirator]]s and [[potassium iodide]] tablets and told to continue working. At 05:00, however, Bagdasarov made his own decision to shut down the reactor, leaving only those operators there who had to work the [[nuclear safety systems|emergency cooling systems]].<ref name="MedvedevZ"/>{{rp|44}}

==== Radiation levels ====

Approximate radiation levels at different locations shortly after the explosion were as follows:<ref name="medv">

{{cite web
| url = http://handle.dtic.mil/100.2/ADA335076
| title = JPRS Report: Soviet Union Economic Affairs Chernobyl Notebook
| author = B. Medvedev
| date =June 1989
| publisher = Novy Mir
| accessdate =27 March 2011
| note = Republished by the Foreign Broadcast Information Service
}}</ref>

{| class="wikitable"
|-
! Location
! Radiation ([[Roentgen (unit)|Roentgen]]s per hour)
! [[Sievert]]s per hour (SI Unit)
|-
| Vicinity of the reactor core || 30,000 || 300
|-
| Fuel fragments || 15,000–20,000 || 150–200
|-
| Debris heap at the place of circulation pumps || 10,000 || 100
|-
| Debris near the electrolyzers || 5,000–15,000 || 50–150
|-
| Water in the Level +25 feedwater room || 5,000 || 50
|-
| Level 0 of the turbine hall || 500–15,000 || 5–150
|-
| Area of the affected unit || 1,000–1,500 || 10–15
|-
| Water in Room 712 || 1,000 || 10
|-
| Control room || 3–5 || 0.03–0.05
|-
| Gidroelektromontazh depot || 30 || 0.3
|-
| Nearby concrete mixing unit || 10–15 || 0.10–0.15
|}

==== Plant layout ====
:''Based on the image of the plant<ref>

{{cite web
| url = http://www.neimagazine.com/journals/Power/NEI/March_2006/attachments/RBMK1000Key.jpg
| title = Cross-sectional view of the RBMK-1000 main building | accessdate =11 September 2010}}</ref>

{| class="wikitable"
|-
! Level
! Objects
|-
!Metres
!Levels are distances above (or below for minus values) ground level at the site.
|-
| 49.6 || Roof of the reactor building, gallery of the refueling mechanism
|-
| 39.9 || Roof of the deaerator gallery
|-
| 35.5 || Floor of the main reactor hall
|-
| 31.6 || Upper side of the upper biological shield, floor of the space for pipes to steam separators
|-
| 28.3 || Lower side of the turbine hall roof
|-
| 24.0 || Deaerator floor, measurement and control instruments room
|-
| 16.4 || Floor of the pipe aisle in the deaerator gallery
|-
| 12.0 || Main floor of the turbine hall, floor of the main circulation pump motor compartments
|-
| 10.0 || Control room, floor under the reactor lower biological shield, main circulation pumps
|-
| 6.0 || Steam distribution corridor
|-
| 2.2 || Upper pressure suppression pool
|-
| 0.0 || Ground level; house switchgear, turbine hall level
|-
| −0.5 || Lower pressure suppression pool
|-
| −5.2, −4.2 || Other turbine hall levels
|-
| −6.5 || Basement floor of the turbine hall
|}

==== Individual involvement ====
{{Main|Individual involvement in the Chernobyl disaster}}

=== Immediate crisis management ===

==== Radiation levels ====
[[File:Levels of radioactivity in the lava under the Chernobyl number four reactor 1986.svg|thumb|350px||Extremely high levels of radioactivity in the lava under the Chernobyl number four reactor in 1986]]
The radiation levels in the worst-hit areas of the reactor building have been estimated to be 5.6&nbsp;[[roentgen (unit)|roentgen]]s per second (R/s) (1.4&nbsp;[[ampere|milliampere]]s per kilogram), equivalent to more than 20,000&nbsp;roentgens per hour. A lethal dose is around 500&nbsp;roentgens (0.13&nbsp;[[coulomb]]s per kilogram) over 5&nbsp;hours, so in some areas, unprotected workers received fatal doses within minutes. However, a [[dosimeter]] capable of measuring up to 1,000&nbsp;R/s (0.3&nbsp;A/kg) was inaccessible because of the explosion, and another one failed when turned on. All remaining dosimeters had limits of 0.001&nbsp;R/s (0.3 µA/kg) and therefore read "off scale". Thus, the reactor crew could ascertain only that the radiation levels were somewhere above 0.001&nbsp;R/s (3.6&nbsp;R/h, or 0.3&nbsp;µA/kg), while the true levels were much higher in some areas.<ref name="MedvedevZ"/>{{rp|42–50}}

Because of the inaccurate low readings, the reactor crew chief Alexander Akimov assumed that the reactor was intact. The evidence of pieces of graphite and reactor fuel lying around the building was ignored, and the readings of another dosimeter brought in by 04:30 were dismissed under the assumption that the new dosimeter must have been defective.<ref name="MedvedevZ"/>{{rp|42–50}} Akimov stayed with his crew in the reactor building until morning, trying to pump water into the reactor. None of them wore any protective gear. Most, including Akimov, died from radiation exposure within three weeks.<ref name="MedvedevG">{{Cite book|last=Medvedev|first=Grigori|title=[[The Truth About Chernobyl]]|publisher=VAAP| year=1989| isbn=2-226-04031-5 |edition=Hardcover |notes=First American edition published by Basic Books in 1991}}</ref>{{rp|247–48}}

==== Fire containment ====
[[File:Leonid Telyatnikov (1951-2004) decorated in UK.jpg|thumb|Firefighter [[Leonid Telyatnikov]], being decorated for bravery]]

Shortly after the accident, firefighters arrived to try to extinguish the fires. First on the scene was a Chernobyl Power Station firefighter brigade under the command of Lieutenant Volodymyr Pravik, who died on 9 May 1986 of [[radiation poisoning|acute radiation sickness]]. They were not told how dangerously radioactive the smoke and the debris were, and may not even have known that the accident was anything more than a regular [[electrical fire]]: "We didn't know it was the reactor. No one had told us."<ref>{{cite video |title=Meltdown in Chernobyl |year=2004 |people=National Geographic |medium=Video}}</ref>

Grigorii Khmel, the driver of one of the [[fire engine]]s, later described what happened:

{{bquote|<p>We arrived there at 10 or 15 minutes to two in the morning.... We saw graphite scattered about. Misha asked: "Is that graphite?" I kicked it away. But one of the fighters on the other truck picked it up. "It's hot," he said. The pieces of graphite were of different sizes, some big, some small, enough to pick them up...</p>

<p>We didn't know much about radiation. Even those who worked there had no idea. There was no water left in the trucks. Misha filled a [[cistern]] and we aimed the water at the top. Then those boys who died went up to the roof – Vashchik, Kolya and others, and Volodya Pravik.... They went up the ladder ... and I never saw them again.<ref>{{Cite journal| last=Shcherbak| first=Y| title=Chernobyl| publisher=Yunost|year=1987|volume=6}} In {{Cite document | last = Medvedev | first = Z | page = 44 }}</ref>{{rp|54}}}}

However, Anatoli Zakharov, a fireman stationed in Chernobyl since 1980, offers a different description:

{{bquote|I remember joking to the others, "There must be an incredible amount of radiation here. We'll be lucky if we're all still alive in the morning."}}

Twenty years after the disaster, he said the firefighters from the Fire Station No. 2 were aware of the risks.

{{bquote|Of course we knew! If we'd followed regulations, we would never have gone near the reactor. But it was a moral obligation – our duty. We were like [[kamikaze]].<ref name="nuclruss">{{cite news|author=Adam Higginbotham | url = http://www.guardian.co.uk/world/2006/mar/26/nuclear.russia|title=Adam Higginbotham: Chernobyl 20 years on &#124; World news &#124; The Observer|work=The Guardian |date=26 March 2006|accessdate=22 March 2010|location=London}}</ref>}}

The immediate priority was to extinguish fires on the roof of the station and the area around the building containing Reactor No.&nbsp;4 to protect No.&nbsp;3 and keep its core cooling systems intact. The fires were extinguished by 5:00, but many firefighters received high doses of radiation. The fire inside reactor 4 continued to burn until 10 May 1986; it is possible that well over half of the graphite burned out.<ref name="MedvedevZ"/>{{rp|73}}

The fire was extinguished by a combined effort of helicopters dropping over 5,000&nbsp;metric tons of sand, lead, clay, and [[neutron capture|neutron absorbing]] [[boron]] onto the burning reactor and injection of [[liquid nitrogen]]. The Ukrainian filmmaker [[Vladimir Shevchenko]] captured film footage of an [[Mil Mi-8|Mi-8]] helicopter as its main rotor collided with a nearby [[construction crane]] cable, causing the helicopter to fall near the damaged reactor building and killing its four-man crew.<ref>{{cite video |title=Mil Mi-8 crash near Chernobyl |url=http://www.youtube.com/watch?v=aw-ik1U4Uvk|year=2006 |medium=Video}}</ref> It is now known that virtually none of the neutron absorbers reached the core.<ref name="BBCContaining">{{cite news|url=http://news.bbc.co.uk/2/hi/special_report/1997/chernobyl/33005.stm |title='&#39;Special Report: 1997: Chernobyl: Containing Chernobyl?'&#39; |publisher=BBC News |date=21 November 1997 |accessdate=20 August 2011}}</ref>

From eyewitness accounts of the firefighters involved before they died (as reported on the [[Canadian Broadcasting Corporation|CBC]] television series [[Witness (TV series)|''Witness'']]), one described his experience of the radiation as "tasting like metal", and feeling a sensation similar to that of [[Paresthesia|pins and needles]] all over his face. (This is similar to the description given by [[Louis Slotin]], a [[Manhattan Project]] physicist who died days after a fatal radiation overdose from a [[Demon core|criticality accident]].)<ref name="zeilig22">{{Cite journal |last=Zeilig |first=Martin |date=August/September 1995|title=Louis Slotin And 'The Invisible Killer' |journal=The Beaver |volume=75 |issue=4 |pages=20–27 |url=http://www.mphpa.org/classic/FH/LA/Louis_Slotin_1.htm |accessdate=28 April 2008}}</ref>

The explosion and fire threw hot particles of the [[nuclear fuel]] and also far more dangerous [[fission product]]s, radioactive isotopes such as [[caesium-137]], [[iodine-131]], [[strontium-90]] and other [[radionuclides]], into the air: the residents of the surrounding area observed the radioactive cloud on the night of the explosion.

===== Timeline =====

* 1:26:03 – fire alarm activated
* 1:28 – arrival of local firefighters, Pravik's guard
* 1:35 – arrival of firefighters from Pripyat, Kibenok's guard
* 1:40 – arrival of Telyatnikov
* 2:10 – turbine hall roof fire extinguished
* 2:30 – main reactor hall roof fires suppressed
* 3:30 – arrival of Kiev firefighters<ref>{{cite web|url=http://www.swrailway.gov.ua/rabslovo/?aid=62 |title=Веб публикация статей газеты |publisher=Swrailway.gov.ua |accessdate=22 March 2010}}</ref>
* 4:50 – fires mostly localized
* 6:35 – all fires extinguished<sup>‡</sup><ref>{{cite web|url=http://surkino.edurm.ru/p4aa1.html |title=Методическая копилка |language=russian |publisher=Surkino.edurm.ru |accessdate=22 March 2010}}</ref>
<sup>‡</sup>With the exception of the fire contained inside Reactor 4, which continued to burn for many days.<ref name="MedvedevZ"/>{{rp|73}}

==== Evacuation developments ====
[[File:View of Chernobyl taken from Pripyat zoomed.JPG|thumb|The view of Chernobyl Nuclear Power Plant taken from the city of Pripyat]]

{{Listen
| filename = Pripyat 1986.ogg
| title = Pripyat evacuation broadcast
| description = Russian language announcement
}}

The nearby city of Pripyat was not immediately evacuated after the incident. The townspeople went about their usual business, completely oblivious to what had just happened. However, within a few hours of the explosion, dozens of people fell ill. Later, they reported severe headaches and metallic tastes in their mouths, along with uncontrollable fits of coughing and vomiting.<ref name=TimeDisaster>{{cite book|title=Time: Disasters that Shook the World|publisher=Time Home Entertainment|location=New York City|year=2012|isbn=1-60320-247-1}}</ref>

The general population of the Soviet Union was first informed of the disaster on 28 April, two days after the explosion, with a 20 second announcement in the TV news program ''[[Vremya]]''.<ref name="vremya">{{ru icon}} [http://www.youtube.com/watch?v=sC7n_QgJRks Video footage of Chernobyl disaster on 28 April]</ref> At that time ABC released its report about the disaster.<ref>{{en icon}} [http://www.istpravda.com.ua/videos/2011/04/25/36966/ American TV-footage about Chernobyl]</ref> During that time, all radio broadcasts run by the state were replaced with classical music, which was a common method of preparing the public for an announcement of a tragedy that had taken place. Scientist teams were armed and placed on alert as instructions were awaited.

Only after radiation levels set off alarms at the [[Forsmark Nuclear Power Plant]] in Sweden,<ref>{{cite news|title=Chernobyl haunts engineer who alerted world|date=26 April 1996|publisher=[[Cable News Network|Cable News Network, Inc.]]|url=http://www.cnn.com/WORLD/9604/26/chernobyl/230pm/index2.html|work=CNN Interactive World News|accessdate=28 April 2008}}</ref> over one thousand kilometers from the Chernobyl Plant, did the Soviet Union admit that an accident had occurred. Nevertheless, authorities attempted to conceal the scale of the disaster. For example, after evacuating the city of Pripyat, the following warning message was read on the state TV: {{quote|There has been an accident at the Chernobyl Nuclear Power Plant. One of the nuclear reactors was damaged. The effects of the accident are being remedied. Assistance has been provided for any affected people. An investigative commission has been set up.|sign=''[[Vremya]]'', 28 April 1986 (21:00)<ref name="vremya"/>}}

A state commission was set up the same day (26 April) and tasked with investigating the accident. It was headed by [[Valery Legasov]], who arrived at Chernobyl in the evening of 26 April. By the time Legasov arrived, two people had already died and 52 were receiving medical attention in hospital. By the night of 26–27 April – more than 24 hours after the explosion – Legasov's committee had ample evidence that extremely high levels of radiation had caused a number of cases of radiation exposure. Based on the evidence at hand, Legasov's committee acknowledged the destruction of the reactor and ordered the [[emergency evacuation|evacuation]] of Pripyat.

The evacuation began at 14:00 on 27 April. An excerpt of the evacuation announcement was translated into English in the program ''[[Seconds From Disaster]]'' on the National Geographic Channel in 2004.<ref name="pripyat evacuation announcement">{{cite episode|title=''Seconds From Disaster'' |episodelink=''Seconds From Disaster'' |series=''Seconds From Disaster'' |serieslink=''Seconds From Disaster'' |credits=Director: Maninderpal Sahota; Narrator: Ashton Smith; Producer: Greg Lanning; Edited by: Chris Joyce |network=[[National Geographic Channel]] |date=17 August 2004 |season=Season 1 (2004) |seriesno=Series 1 |number=7 |minutes=30/40–50 minutes }}</ref> A translation of the rest of the audio follows.{{quote|For the attention of the residents of Pripyat! The City Council informs you that due to the accident at Chernobyl Power Station in the city of Pripyat the radioactive conditions in the vicinity are deteriorating. The Communist Party, its officials and the armed forces are taking necessary steps to combat this. Nevertheless, with the view to keep people as safe and healthy as possible, the children being top priority, we need to temporarily evacuate the citizens in the nearest towns of Kiev Oblast. For these reasons, starting from April 27, 1986 2&nbsp;pm each apartment block will be able to have a bus at its disposal, supervised by the police and the city officials. It is highly advisable to take your documents, some vital personal belongings and a certain amount of food, just in case, with you. The senior executives of public and industrial facilities of the city has decided on the list of employees needed to stay in Pripyat to maintain these facilities in a good working order. All the houses will be guarded by the police during the evacuation period. Comrades, leaving your residences temporarily please make sure you have turned off the lights, electrical equipment and water and shut the windows. Please keep calm and orderly in the process of this short-term evacuation.|sign=Evacuation announcement in Pripyat, 27 April 1986 (14:00)}}
In order to expedite the evacuation, the residents were told to bring only what was necessary, as the authorities had said it would only last approximately three days. As a result, most of the residents left their personal belongings, which are still there today. An [[Chernobyl Nuclear Power Plant Exclusion Zone|exclusion zone]] of 30&nbsp;km (19&nbsp;mi) remains in place today, although its shape has changed and its size has been expanded.

As the plant was run by authorities in Moscow, the government of Ukraine did not receive prompt information on the situation at the site, according to the former chairman of Presidium of [[Verkhovna Rada]] of Ukrainian SSR, [[Valentyna Shevchenko]].<ref name="shevchenko">{{cite web|url=http://www.istpravda.com.ua/articles/2011/04/25/36971/ |title=Interview of Valentyna Shevchenko to "Young Ukraine" (Ukrainian Pravda) |publisher=Istpravda.com.ua |date=25 April 2011 |accessdate=20 August 2011}}</ref> In her recollections she stated that she was at work when at 09:00 [[Vasyl Durdynets]] who performed duties of the [[Ministry of Internal Affairs (Ukraine)|Minister of Internal Affairs]] at the time (as the First Deputy Minister) called in with a report on the recent situation, adding at the end that there was a fire at the Chernobyl AES (AES – an abbreviation for a nuclear power plant), which was extinguished and everything was fine (see [[Chernobyl disaster#Fire containment|Fire containment]]). When Shevchenko asked "How are the people?", he replied that there was nothing to be concerned with: "some are celebrating a wedding, others are gardening, and others are fishing in the [[Pripyat River]]".<ref name="shevchenko"/>

On 25 April 2011 the President of Ukraine Viktor Yanukovych awarded Durdynets the "Distinguished Juror of Ukraine" as an advisor of the Ministry of Internal Affairs, a participant in the liquidation of consequences of Chernobyl disaster, and a general of Internal Service of Ukraine.<ref>{{uk icon}} [http://www.president.gov.ua/documents/13489.html Presidential Decree #501/2011 "For distinguishing with the state awards of Ukraine"]</ref> After the report Shevchenko called in to [[Volodymyr Shcherbytsky]] (Head of the Central Committee of [[Communist Party (Bolsheviks) of Ukraine|CP(b)U]], de facto – a head of state).<ref name="shevchenko"/> Shcherbytsky stated that he anticipated a delegation of the state commission headed by the deputy chairman of the [[Council of Ministers of USSR]].<ref name="shevchenko"/>

Among the delegation's officials were academic [[Evgeny Velikhov]], a leading nuclear specialist in the Soviet Union; a head of Hydro-Meteorologic Service of USSR [[Yuriy Izrael]]; a chief radiologist of the country [[Leonid Ilyin]]; and others. From the [[Boryspil International Airport]] the delegation drove to the power plant, realised the seriousness of the situation that night, and decided to evacuate the residents of Pripyat.<ref name="shevchenko"/> On 26 April 2011 Velikhov was awarded [[Order of Merit (Ukraine)|Order of Merit]] of the III degree from the [[President of Ukraine]] [[Viktor Yanukovych]] for his contributions in the liquidation of consequences of the Chernobyl disaster.<ref>{{uk icon}} [http://www.president.gov.ua/documents/13490.html Presidential Decree #502/2011 "For distinguishing with the state awards of Ukraine the citizens of foreign countries"]</ref>

By the morning of 27 April, buses arrived in Pripyat to start the evacuation at 11:00. By 15:00, 53,000 people were evacuated to various villages of [[Kiev Oblast|Kiev region]].<ref name="shevchenko"/> At first it was decided to evacuate the population temporarily for three days, however later it was postponed permanently. Many took only the most necessary items and their documents leaving all the rest behind.<ref name="shevchenko"/> The next day, talks began for evacuating people from the 10&nbsp;km zone.

Shevchenko was the first of the Ukrainian state top officials to arrive at the disaster site early on 28 April. There she spoke with members of medical staff and people, who were calm and hopeful that they could soon return to their homes. Shevchenko returned home near midnight, stopping at a radiological checkpoint in Vilcha, one of the first that were set up soon after the accident.<ref name="shevchenko"/>

There was a notification from Moscow that there was no reason to postpone the [[International Workers' Day|1 May]] celebrations (including the annual parade), but on 30 April a meeting of the Political bureau of the Central Committee of CP(b)U took place to discuss the plan for the upcoming celebration. Scientists were reporting that the radiological background in Kiev city was normal. At the meeting, which was finished at 18:00, it was decided to shorten celebrations from the regular 3.5–4 to under 2 hours.<ref name="shevchenko"/>

==== Steam explosion risk ====
[[File:Chernobyl lava flow.jpg|thumb|Chernobyl [[corium (nuclear reactor)|corium lava]] flows formed by fuel-containing mass in the basement of the plant<ref name=Lava1/>]]

Two floors of bubbler pools beneath the reactor served as a large water reservoir for the emergency cooling pumps and as a pressure suppression system capable of condensing steam in case of a small broken steam pipe; the third floor above them, below the reactor, served as a steam tunnel. The steam released by a broken pipe was supposed to enter the steam tunnel and be led into the pools to bubble through a layer of water. After the disaster, the pools and the basement were flooded because of ruptured cooling water pipes and accumulated firefighting water, and constituted a serious steam explosion risk.

The [[smoldering]] graphite, fuel and other material above, at more than 1200&nbsp;°C,<ref name=lava2>{{Cite journal|doi=10.1134/S1087659609020126|volume=35|issue=2|pages=199–204|last=Petrov|first=Yu.|coauthors=Yu. Udalov, J. Subrt, S. Bakardjieva, P. Sazavsky, M. Kiselova, P. Selucky, P. Bezdicka, C. Jorneau, P. Piluso|title=Behavior of melts in the UO<sub>2</sub>-SiO<sub>2</sub> system in the liquid-liquid phase separation region|journal=Glass Physics and Chemistry|date=1 April 2009}}</ref> started to burn through the reactor floor and mixed with molten concrete from the reactor lining, creating [[corium (nuclear reactor)|corium]], a radioactive semi-liquid material comparable to [[lava]].<ref name=Lava1>{{Cite journal|doi=10.1134/S1066362208050131|volume=50|issue=6|pages=650–654|last=Bogatov|first=S.|coauthors=A. Borovoi, A. Lagunenko, E. Pazukhin, V. Strizhov, V. Khvoshchinskii|title =Formation and spread of Chernobyl lavas|journal=Radiochemistry|date=1 December 2008}}</ref><ref name=lava3>{{Cite journal|last=Journeau|first=C.|coauthors=E. Boccaccio, C. Jégou, P. Piluso, G. Cognet|title=Flow and Solidification of Corium in the VULCANO facility|booktitle=5th World conference on experimental heat transfer, fluid mechanics and thermodynamics, Thessaloniki, Greece|year=2001|url=http://www.plinius.eu/home/liblocal/docs/Flow_Solidification_VULCANO.pdf}}</ref> If this mixture had melted through the floor into the pool of water, it was feared it could have created a serious steam explosion that would have ejected more radioactive material from the reactor. It became necessary to drain the pool.<ref>Mevedev Z. (1990):58–59</ref>

The bubbler pool could be drained by opening its [[sluice gates]]. Volunteers in [[diving suit]]s entered the radioactive water and managed to open the gates. These were the engineers Alexei Ananenko (who knew where the valves were) and Valeri Bezpalov, accompanied by a third man, Boris Baranov, who provided them with light from a lamp, though this lamp failed, leaving them to find the valves by feeling their way along a pipe. All of them returned to the surface and according to Ananenko, their colleagues jumped in joy when they heard they had managed to open the valves.

Despite their apparently good condition after completing the work, all three suffered from [[radiation sickness]] and later died.<ref>{{Cite news|url=http://www.scotsman.com/news/stephen-mcginty-lead-coffins-and-a-nation-s-thanks-for-the-chernobyl-suicide-squad-1-1532289|title=Stephen McGinty: Lead coffins and a nation's thanks for the Chernobyl suicide squad |date=16 March 2011|publisher=scotsman.com}}</ref> Some sources claim incorrectly that they died in the plant.<ref>Chernobyl: The End of the Nuclear Dream, 1986, p.178, by Nigel Hawkes et al., ISBN 0-330-29743-0</ref> It is likely that intense [[alpha radiation]] [[radiolysis|hydrolyzed]] the water, generating a low-[[pH]] [[hydrogen peroxide]] (H<sub>2</sub>O<sub>2</sub>) solution akin to an [[oxidizing acid]].<ref name=Sattonnay>{{Cite journal|doi=10.1016/S0022-3115(00)00714-5|volume=288|issue=1|pages=11–19|last=Sattonnay|first=G.|coauthors=C. Ardois, C. Corbel, J. F. Lucchini, M. -F. Barthe, F. Garrido, D. Gosset|title=Alpha-radiolysis effects on UO2 alteration in water|journal=Journal of Nuclear Materials|accessdate=21 August 2009|date=2001-01|url=http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TXN-42993M3-3&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=987276167&_rerunOrigin=scholar.google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=176c731b3153a03f1c27bc6f948bd647}}</ref> Conversion of bubbler pool water to H<sub>2</sub>O<sub>2</sub> is confirmed by the presence in the Chernobyl lavas of [[studtite]] and metastudtite,<ref name=studite1>{{Cite journal|doi=10.1021/es0492891|volume=38|issue=24|pages=6656–6661|last=Clarens|first=F.|coauthors=J. de Pablo, I. Diez-Perez, I. Casas, J. Gimenez, M. Rovira|title=Formation of Studtite during the Oxidative Dissolution of UO2 by Hydrogen Peroxide: A SFM Study|journal=Environmental Science & Technology|date=1 December 2004}}</ref><ref name=Studite2>{{Cite conference|volume=465|pages=1309–1312|last=Burakov|first=B. E.|coauthors=E. E. Strykanova, E. B. Anderson|title=Secondary Uranium Minerals on the Surface of Chernobyl" Lava"|booktitle=Materials Research Society Symposium Proceedings|year=1997}}</ref> the only minerals that contain peroxide.<ref name=Studite3>{{Cite journal|volume=88|pages=1165–1168|last=Burns|first=P. C|coauthors=K. A Hughes|title=Studtite, (UO2)(O2)(H2O)2(H2O)2: The first structure of a peroxide mineral|journal=American Mineralogist|year=2003|url=http://www.kubatko.com/studtitestructure.pdf}}</ref>

Fire brigade pumps were then used to drain the basement. The operation was not completed until 8 May, after 20,000&nbsp;metric tons of highly radioactive water were pumped out.

With the bubbler pool gone, a meltdown was less likely to produce a powerful steam explosion. To do so, the molten core would now have to reach the [[water table]] below the reactor. To reduce the likelihood of this, it was decided to freeze the earth beneath the reactor, which would also stabilize the foundations. Using [[Well drilling|oil drilling equipment]], the injection of liquid nitrogen began on 4 May. It was estimated that 25&nbsp;metric tons of liquid nitrogen per day would be required to keep the soil frozen at −100&nbsp;°C.<ref name="MedvedevZ"/>{{rp|59}} This idea<ref>{{Cite news|url=http://hawaiinewsdaily.com/2011/03/when-the-fukushima-meltdown-hits-groundwater|title=When the Fukushima Meltdown Hits Groundwater|author=Tom Burnett|date=28 March 2011|publisher=Hawai'i News Daily}}</ref> was soon scrapped and the bottom room where the cooling system would have been installed was filled with concrete.

==== Debris removal ====
[[File:Cherbnobyl-powerplant-today.jpg|thumb|Chernobyl power plant in 2003 with the [[Chernobyl Nuclear Power Plant sarcophagus|sarcophagus containment structure]]]]
The worst of the radioactive [[debris]] was collected inside what was left of the reactor, much of it shoveled in by [[Liquidator (Chernobyl)|liquidators]] wearing heavy protective gear (dubbed "bio-robots" by the military); these workers could only spend a maximum of 40&nbsp;seconds at a time working on the rooftops of the surrounding buildings because of the extremely high doses of radiation given off by the blocks of graphite and other debris. The reactor itself was covered with bags of sand, lead and [[boric acid]] dropped from helicopters: some 5,000 metric tons of material were dropped during the week that followed the accident.

At the time there was still fear that the reactor could re-enter a self-sustaining nuclear chain-reaction and explode again, and a new containment structure was planned to prevent rain entering and triggering such an explosion, and to prevent further release of radioactive material. This was the largest civil engineering task in history, involving a quarter of a million construction workers who all reached their official lifetime limits of radiation.<ref name="BBCContaining"/> By December 1986, a large concrete [[Chernobyl Nuclear Power Plant sarcophagus|sarcophagus]] had been erected to seal off the reactor and its contents.<ref>The Social Impact of the Chernobyl Disaster, 1988, p. 166, by David R. Marples ISBN 0-333-48198-4</ref> A unique "clean up" medal was given to the workers.<ref>[http://collectinghistory.net/chernobyl/index.html Medal for Service at the Chernobyl Nuclear Disaster]</ref>

Many of the vehicles used by the "liquidators" remain parked in a field in the Chernobyl area.<ref>{{cite news|url=http://news.bbc.co.uk/2/shared/spl/hi/pop_ups/06/in_pictures_chernobyl0s_silent_graveyards_/html/1.stm|title=Chernobyl's silent graveyards|date=20 April 2006|work=BBC News}}</ref>

During the construction of the sarcophagus, a scientific team re-entered the reactor as part of an investigation dubbed "Complex Expedition", to locate and contain nuclear fuel in a way that could not lead to another explosion. These scientists manually collected cold fuel rods, but great heat was still emanating from the core. Rates of radiation in different parts of the building were monitored by drilling holes into the reactor and inserting long metal detector tubes. The scientists were exposed to high levels of radiation and radioactive dust.<ref name="BBCContaining"/>

After six months of investigation, in December 1986, they discovered with the help of a remote camera an intensely radioactive mass in the basement of Unit Four, more than two metres wide and weighing hundreds of tons, which they called "the elephant's foot" for its wrinkled appearance. The mass was composed of sand, glass and a large amount of nuclear fuel that had escaped from the reactor. The concrete beneath the reactor was steaming hot, and was breached by solidified lava and spectacular unknown crystalline forms termed [[chernobylite]]. It was concluded that there was no further risk of explosion.<ref name="BBCContaining"/>


== Causes ==
== Causes ==
L'accident s'est produit lors d'un exercice qui avait pour but de prouver que la centrale pouvait être relancée d'elle-même à la suite d'une perte totale du réseau électrique. La centrale était pourvue de générateurs diesel, mais ceux-ci mettaient {{unité|15|secondes}} pour démarrer et de 60 à {{unité|75|secondes}} pour arriver à leur puissance maximale. Ce laps de temps étant considéré comme trop élevé, l'objectif était d'utiliser l'énergie cinétique du turbo-alternateur pour relancer les pompes de recirculation primaires pendant cette période. Les réacteurs [[RBMK]] sont instables à faible puissance avec du combustible peu enrichi comme c'était le cas. Cet exercice a été conduit à une puissance trop faible et en plein pic Xénon et Iode : ce phénomène est qualifié d'« [[empoisonnement au xénon|empoisonnement du réacteur]] ». La conduite à tenir à ce stade aurait été d'arrêter le réacteur pendant 1 à 2 jours en maintenant un refroidissement permanent le temps que l'[[iode]] et le [[xénon]] se désintègrent naturellement.


=== Operator error ===
Le [[réaction chimique|réactif]] de l'explosion est le liquide [[caloporteur]], en l'espèce de l'[[eau légère]]. La chaleur aurait provoqué la [[radiolyse]] de l'eau, puis la recombinaison de l'hydrogène et de l'oxygène libérés aurait provoqué l'explosion qui a soulevé la dalle de béton recouvrant le réacteur. Selon d'autres experts, l'explosion serait une [[explosion de vapeur]], conduisant aux mêmes conséquences. Le graphite incandescent après l'explosion a fait fondre la gaine des crayons d'uranium, en [[zirconium]] et s'en est suivie la fusion de l'uranium lui-même qui dégagea des gaz et particules hautement radioactifs qui ont contribué à la contamination des nuages. L'incendie a été entretenu par la suite par la combustion du graphite. Il n'y a donc pas eu d'[[explosion nucléaire]] : si le point de départ est bien une [[Réaction_en_chaîne_(nucléaire)|réaction nucléaire en chaîne]], c'est bien une réaction chimique, et non nucléaire qui a provoqué la catastrophe.
Suite à l'accident, de grandes quantités de [[radioisotope]]s, radioactifs (et pour certains, extrêmement toxiques de surcroît), ont été libérées dans l'atmosphère. L'accident qui s'est produit à la [[centrale nucléaire de Tchernobyl]] dans le réacteur {{numéro|4}} est ainsi classé au niveau le plus élevé (le niveau 7) dans l’[[échelle INES]] qui mesure la gravité des [[accident nucléaire|accidents nucléaires]].


There were two official explanations of the accident: the first, later acknowledged to be erroneous, was published in August 1986 and effectively placed the blame on the [[power plant]] operators. To investigate the causes of the accident the [[IAEA]] created a group known as the [[International Nuclear Safety Advisory Group]] (INSAG), which in its report of 1986, INSAG-1, on the whole also supported this view, based on the data provided by the Soviets and the oral statements of specialists.<ref>IAEA Report INSAG-1 [http://www-ns.iaea.org/committees/insag.asp (International Nuclear Safety Advisory Group)]. Summary Report on the Post-Accident Review on the Chernobyl Accident. Safety Series No. 75-INSAG-1.IAEA, Vienna, 1986.</ref> In this view, the catastrophic accident was caused by gross violations of operating rules and regulations. "During preparation and testing of the turbine generator under run-down conditions using the auxiliary load, personnel disconnected a series of technical protection systems and breached the most important operational safety provisions for conducting a technical exercise."<ref name=atom>{{ru icon}}{{cite journal |url=http://accidont.ru/expert.html|title=Expert report to the IAEA on the Chernobyl accident |publisher=Atomic Energy |volume= 61 |year=1986}}</ref>{{rp|311}}
=== Conception et construction du réacteur ===
[[Fichier:RBMK reactor schematic-fr.svg|thumb|250px|Schéma simplifié d'un RBMK]]
[[Image:RBMK fr.svg|thumb|250px|Schéma détaillé d'un RBMK]]
Le réacteur de la tranche {{numéro}}4 est de type [[RBMK|RBMK 1000]] (réacteur de grande puissance à tubes de force). Par sa conception, ce type de réacteur présente plusieurs points faibles :
* Son [[coefficient de vide]] est positif à basse puissance et dans certaines conditions de fonctionnement (contrairement aux réacteurs RBMK plus récents) : si des bulles se forment dans le fluide [[caloporteur]], la réaction tend à s'emballer. Les opérateurs de la centrale n'en étaient pas au courant. Cet état de fait a les origines suivantes :
** D'une part, le modérateur prépondérant est le graphite qui est solide et peu sensible en volume aux variations de température.
** D'autre part, pour pouvoir utiliser de l'uranium 235 peu enrichi, le réseau en fonctionnement est proche de l'optimum de modération.
** Ces dispositions étaient considérées comme bonnes par les concepteurs parce qu'elles rendent le réseau relativement peu sensible aux variations du taux de vide dans le cours du fonctionnement normal du réacteur. En effet, le taux de vide est variable en fonctionnement ; plus la puissance est élevée, plus la pression de vapeur est basse et plus le taux de vide est élevé dans le cœur. Dès lors si l'augmentation du taux de vide déprime fortement la réactivité (soit un effet de vide fortement négatif), une augmentation de la puissance nécessite une manœuvre importante des absorbants de commande pour compenser et accompagner la montée en puissance du réacteur. A contrario, une relative insensibilité de la réactivité du cœur au taux de vide facilite la régulation d'ensemble en limitant la nécessité de faire varier trop fréquemment la réactivité du cœur au moyen des absorbants de commande ce qui est une bonne chose du point de vue de la régulation d'ensemble de la centrale.
** Dans certaines configurations toutefois, on peut se trouver avec un cœur surmodéré dans lequel la disparition d'atomes d'hydrogène modérateurs et celle d'atomes d'oxygène absorbants, induites par l'augmentation du taux de vide dans le cœur, provoquent une augmentation de la réactivité.
* Le réacteur se retrouve donc à un niveau de puissance faible pour commencer l'expérience dans lequel il est instable : le coefficient de vide était positif c’est-à-dire que plus le réacteur chauffait, plus il produisait de vapeur et plus la réactivité augmentait, le système était divergent. Ce phénomène dû à la conception est pourtant bien connu, c’est pourquoi il était interdit de maintenir le réacteur dans cet état.
* Le [[graphite]] utilisé comme [[modérateur (nucléaire)|modérateur]] est inflammable à haute température.
* Le système d'arrêt d'urgence du réacteur est particulièrement lent ({{unité|20|secondes}}). Ce système d'arrêt d'urgence est assuré par le déplacement de barres absorbantes, dites barres de contrôle, qui descendent dans le cœur du réacteur. En outre, dans certaines situations les barres de contrôle accroissent la réactivité durant la première phase de leur descente dans le cœur. Cette particularité a été un facteur aggravant de l'accident car les opérateurs ont ainsi été trompés : ils disposaient sans le savoir d'un accélérateur et non pas d'un frein de la réaction nucléaire en chaîne. Dans les centrales du même type que les centrales françaises, ces barres descendent sous la seule action de la gravité en cas d'urgence. De ce fait, elles mettent environ {{unité|1|seconde}} à atteindre leur efficacité maximale.
* La centrale de Tchernobyl n'avait pas d'enceinte de confinement, contrairement aux centrales en occident ; c'est ce qui a permis aux rejets radioactifs de s'échapper aisément dans l'environnement.


The operator error was probably due to their lack of knowledge of [[nuclear reactor physics]] and [[nuclear engineering|engineering]], as well as lack of experience and training. According to these allegations, at the time of the accident the reactor was being operated with many key safety systems turned off, most notably the [[Emergency Core Cooling System]] (ECCS), LAR (Local Automatic control system), and AZ (emergency power reduction system). Personnel had an insufficiently detailed understanding of technical procedures involved with the nuclear reactor, and knowingly ignored regulations to speed test completion.<ref name="atom"/>
Outre ces problèmes de conception, la construction de la centrale a été réalisée sans respecter les normes en vigueur. Un rapport confidentiel de [[1979]], signé par le directeur du [[KGB]] [[Iouri Andropov]] et cité par Nicolas Werth<ref name="NW">Nicolas Werth, ''L'Histoire'' {{numéro|308}}, op. cit.</ref>, souligne que « divers chantiers de construction réalisant le bloc {{numéro}}2 de la centrale atomique de Tchernobyl mènent leurs travaux sans aucun respect des normes, des technologies de montage et de construction définies dans le [[cahier des charges]] »<ref name="Archives">{{Date|21|février|1979}}, archives d'État de Russie en histoire contemporaine, fonds 5, inv. 76, dos352, f. 40-41.</ref>.


{{quote|The developers of the reactor plant considered this combination of events to be impossible and therefore did not allow for the creation of emergency protection systems capable of preventing the combination of events that led to the crisis, namely the intentional disabling of emergency protection equipment plus the violation of operating procedures. Thus the primary cause of the accident was the extremely improbable combination of rule infringement plus the operational routine allowed by the power station staff.<ref name=atom/>{{rp|312}}}}
En [[1983]], l'« acte de mise en exploitation expérimentale » du réacteur {{numéro}}4 de la [[centrale nucléaire de Tchernobyl|centrale de Tchernobyl]] est signé alors que « toutes les vérifications n'avaient pas été achevées »<ref name="NW" />.


In this analysis of the causes of the accident, deficiencies in the reactor design and in the operating regulations that made the accident possible were set aside and mentioned only casually. Serious critical observations covered only general questions and did not address the specific reasons for the accident. The following general picture arose from these observations. Several procedural irregularities also helped to make the accident possible. One was insufficient communication between the safety officers and the operators in charge of the experiment being run that night.
=== Cause directe ===
Un [[essai d’îlotage]] était prévu sur le réacteur {{numéro}}4, pour tester l'alimentation électrique de secours qui permet au réacteur de fonctionner en toute sécurité pendant une panne de courant. La puissance thermique<ref name="React">Les [[réacteurs nucléaires]] visant à la production d’électricité ont un rendement approximatif d’un tiers (entre la puissance thermique et la puissance électrique) ; la puissance d'une centrale est exprimée en mégawatt ({{unité|1|MW}} = 1&nbsp;million de [[watt]]s).</ref> du réacteur avait été réduite de {{unité|1000|MW}} à {{unité|200|MW}} dans le cadre de ce test dans la nuit du 25 au 26 avril. L'expérience était initialement prévue dans la journée du 25 avril, mais une autre centrale électrique tomba en panne et le centre de régulation de Kiev demanda de retarder l'expérience car son énergie était nécessaire pour satisfaire la consommation électrique de la soirée. À 23 h 04, le centre de régulation de Kiev donna l'autorisation de reprendre l'expérience.


The reactor operators disabled safety systems down to the generators, which the test was really about. The main process computer, SKALA, was running in such a way that the main control computer could not shut down the reactor or even reduce power. Normally the reactor would have started to insert all of the [[control rods]]. The computer would have also started the "Emergency Core Protection System" that introduces 24 control rods into the active zone within 2.5 seconds, which is still slow by 1986 standards. All control was transferred from the process computer to the human operators.
L'accident s'est alors produit suite à une série d'erreurs commises par les techniciens de la centrale en supprimant sous les ordres de leur supérieur, [[Anatoli Diátlov]], plusieurs sécurités. Les opérateurs ont notamment violé des procédures garantissant la sécurité du réacteur et donc de la centrale. Enfin, depuis sa mise en service en [[1977]], la centrale est dirigée par Viktor Petrovitch Brioukhanov, un ingénieur en [[thermodynamique]] et non un spécialiste du nucléaire. Il fait partie d'une génération d'hommes promus grâce à « leur volontarisme militant, qui consistait d'abord et avant tout à remplir et dépasser le plan de production, nonobstant le respect des normes de construction ou de sécurité »<ref name="NW" />.


This view is reflected in numerous publications and also artistic works on the theme of the Chernobyl accident that appeared immediately after the accident,<ref name=MedvedevZ/> and for a long time remained dominant in the public consciousness and in popular publications.
=== Chronologie des événements ===
Le test prévoyait que la puissance du réacteur soit située entre 700 et {{unité|1000|MW}}. La puissance de {{unité|700|MW}} est atteinte le 26 avril 1986 à 00 h 05 mais continue à baisser. Lorsqu'elle atteint environ {{unité|500|MW}}, le responsable du régime du réacteur, Leonid Toptunov, commet une erreur en insérant les [[Barre de contrôle (nucléaire)|barres de commande]] trop loin. Ceci conduit à la chute de la puissance de sortie qui atteint {{unité|30|MW}}, provoquant un [[empoisonnement au xénon|empoisonnement du réacteur au xénon]]. Les opérateurs essaient alors de rétablir la puissance, mais le [[xénon]]-135 accumulé absorbe les [[neutron]]s et limite la puissance à {{unité|200|MW}}. Pour débloquer la situation, les opérateurs retirent les barres de [[carbure de bore]], qui servent à piloter la température du réacteur, au-delà des limites de sécurité autorisées.


=== Operating instructions and design deficiencies found ===
* Le 26 avril 1986, entre 01 h 03 et 01 h 07, deux pompes supplémentaires du circuit de refroidissement sont enclenchées pour essayer d'augmenter la puissance du réacteur. Le flot supplémentaire entraîne une hausse de température dans les échangeurs de chaleur. À 01 h 19, pour stabiliser le débit d'eau arrivant dans les séparateurs de vapeur, la puissance des pompes est encore augmentée et dépasse la limite autorisée. Le système demande l'arrêt d'urgence. Les signaux sont bloqués et les opérateurs décident de continuer.
[[File:Chaes cz 1-2.jpg|thumb|Reactor hall No. 1, Chernobyl nuclear power plant, Ukraine]]
In 1991 a Commission of the USSR State Committee for the Supervision of Safety in Industry and Nuclear Power has reassessed the causes and circumstances of the Chernobyl accident and came to new insights and conclusions. Based on it, in 1992 the IAEA Nuclear Safety Advisory Group (INSAG) published an additional report, INSAG-7,<ref name=insag7/> which reviewed "that part of the INSAG-1 report in which primary attention is given to the reasons for the accident". and included the USSR State Commission report as Appendix I.<ref name=insag7/>


In this INSAG report, most of the earlier accusations against staff for breach of regulations were acknowledged to be either erroneous, based on incorrect information obtained in August 1986, or less relevant. This report reflected another view of the main reasons for the accident, presented in Appendix I. According to this account, the operators' actions in turning off the Emergency Core Cooling System, interfering with the settings on the protection equipment, and blocking the level and pressure in the separator drum did not contribute to the original cause of the accident and its magnitude, although they may have been a breach of regulations. Turning off the emergency system designed to prevent the two turbine generators from stopping was not a violation of regulations.<ref name=insag7/>
* L'essai proprement dit débute à 01 h 23 et 4 s. Les vannes d'alimentation en vapeur de la turbine sont fermées, ce qui fait augmenter la pression dans le [[Centrale_nucléaire#Circuit_primaire_ferm.C3.A9|circuit primaire]]. Les générateurs diesel démarrent et atteignent leur puissance nominale à 01 h 23 et 43 s. Durant ce temps, l'alimentation des pompes était fournie par l'inertie des turbo-alternateurs. Le débit d'eau passant dans le réacteur décroît au fur et à mesure de la baisse de régime des turbo-alternateurs, ce qui provoque la formation de bulles dans le liquide de refroidissement. À cause du [[coefficient de vide]] positif, le réacteur entre dans une [[rétroaction]] positive (amplificatrice du processus engagé), entrainant une rapide montée de la puissance du réacteur.


Human factors contributed to the conditions that led to the disaster. These included operating the reactor at a low power level – less than 700&nbsp;MW – a level documented in the run-down test program, and operating with a small [[Reactivity (nuclear)|operational reactivity margin]] (ORM). The 1986 assertions of Soviet experts notwithstanding, regulations did not prohibit operating the reactor at this low power level.<ref name=insag7>{{cite web |url=http://www-pub.iaea.org/MTCD/publications/PDF/Pub913e_web.pdf |title=IAEA Report INSAG-7 Chernobyl Accident: Updating of INSAG-1 Safety Series, No.75-INSAG-7|publisher=International Atomic Energy Agency|location=Vienna |year=1992}}</ref>{{rp|18}}
* À 01 h 23 et 40 s, le contremaître de nuit Alexandre Akimov, sous les ordres d'Anatoly Diatlov, l'ingénieur en chef adjoint, déclenche l'arrêt d'urgence. Les [[Barre de contrôle (nucléaire)|barres de contrôle]] sont descendues, sans grand effet : en effet, le réacteur est déjà bien trop chaud, ce qui a déformé les canaux destinés aux barres de commande ; celles-ci ne sont descendues qu'à {{unité|1.50|m}} au lieu des {{unité|7|m}} normaux.


However, regulations did forbid operating the reactor with a small margin of reactivity. Yet "post-accident studies have shown that the way in which the real role of the ORM is reflected in the Operating Procedures and design documentation for the RBMK-1000 is extremely contradictory," and furthermore, "ORM was not treated as an operational safety limit, violation of which could lead to an accident."<ref name=insag7/>{{rp|34–25}}
* À 01 h 23 et 44 s la [[radiolyse]] de l'[[eau]] conduit à la formation d'un mélange détonant d'[[hydrogène]] et d'[[oxygène]]. De petites explosions se produisent, éjectant les barres permettant le pilotage du réacteur. « En 3 à 5 secondes, la puissance du réacteur centuple »<ref name="Nesterenko">[http://www.dissident-media.org/infonucleaire/hypothese_nesterenko.html Lettre du Professeur Nesterenko à Wladimir Tchertkoff, Solange Fernex et Bella Belbéoch], janvier 2005</ref>. Les {{unité|1200|tonnes}} de la dalle de béton recouvrant le réacteur sont projetées en l'air et retombent de biais sur le cœur du réacteur qui est fracturé par le choc. Un [[incendie]] très important se déclare, tandis qu'une lumière aux reflets bleus se dégage du trou formé.


According to the INSAG-7 Report, the chief reasons for the accident lie in the peculiarities of physics and in the construction of the reactor. There are two such reasons:<ref name=insag7/>{{rp|18}}
* Les techniciens présents sur place, ainsi que le Directeur Brioukhanov réveillé à 1 h 30, ne saisissent pas immédiatement l'ampleur de la catastrophe. Ce dernier appelle le ministère de l'Énergie à 4 h en déclarant que « Le cœur du réacteur n'est probablement pas endommagé »<ref name="NW" />. Il reçoit pour ordre de maintenir le refroidissement par eau du réacteur ; cet ordre, que Brioukhanov persistera à appliquer toute la journée, n'aura pour effet que de libérer plus de radio-éléments dans l'atmosphère et de noyer les installations souterraines communes aux réacteurs 3 et 4, menaçant gravement le fonctionnement et l'intégrité du réacteur 3. L'ingénieur en chef responsable du réacteur 3 prendra, au cours de la journée et contre les directives de Brioukhanov, la décision de faire passer ce réacteur en arrêt à froid, permettant ainsi de le sauver d'une destruction certaine, au vu de la destruction progressive des installations.


* The reactor had a dangerously large positive void coefficient. The void coefficient is a measurement of how a reactor responds to increased steam formation in the water coolant. Most other reactor designs have a negative coefficient, i.e. the nuclear reaction rate slows when steam bubbles form in the coolant, since as the vapor phase in the reactor increases, fewer [[neutrons]] are slowed down. [[Fast neutron|Faster neutrons]] are less likely to split [[uranium]] atoms, so the reactor produces less power (a negative feed-back). Chernobyl's RBMK reactor, however, used solid [[nuclear graphite|graphite]] as a [[neutron moderator]] to [[thermal neutrons|slow down the neutrons]], and the water in it, on the contrary, acts like a harmful [[neutron absorber]]. Thus neutrons are slowed down even if steam bubbles form in the water. Furthermore, because steam [[neutron capture|absorbs neutrons]] much less readily than water, increasing the intensity of vaporization means that more neutrons are able to split uranium atoms, increasing the reactor's power output. This makes the RBMK design very unstable at low power levels, and prone to suddenly increasing energy production to a dangerous level. This behavior is [[counter-intuitive]], and this property of the reactor was unknown to the crew.
=== Versions alternatives ===
Plus de cent versions alternatives de l'accident ont été proposées par des sources diverses. Aucune de ces versions n'a jamais été reprise dans un rapport national ou international, ni dans une revue publiée sous [[évaluation par les pairs]].


* A more significant flaw was in the design of the [[control rods]] that are inserted into the reactor to slow down the reaction. In the RBMK reactor design, the lower part of each control rod was made of graphite and was 1.3 meters shorter than necessary, and in the space beneath the rods were hollow channels filled with water. The upper part of the rod, the truly functional part that absorbs the neutrons and thereby halts the reaction, was made of [[boron carbide]]. With this design, when the rods are inserted into the reactor from the uppermost position, the graphite parts initially displace some water (which absorbs neutrons, as mentioned above), effectively causing less neutrons to be absorbed initially. Thus for the first few seconds of control rod activation, reactor power output is increased, rather than reduced as desired. This behavior is counter-intuitive and was not known to the reactor operators.
L'une d'elles attribue la cause de l'accident à un tremblement de terre qui aurait eu lieu quelques secondes avant dans la zone de Tchernobyl<ref>{{en}} [http://english.pravda.ru/hotspots/disasters/12-05-2005/8231-chernobyl-0/ Nature's anomaly blamed for Chernobyl disaster], ''Pravda'', 12 mai 2005</ref>{{,}}<ref>[http://www.historia.fr/mensuel/655/lhypothese-du-tremblement-de-terre-01-07-2001-50874 L'hypothèse du tremblement de terre], ''Historia'', 30 juin 2001</ref>{{,}}<ref>{{ru}} [http://scholar.google.com/scholar_host?q=info:KlldaSXQ9dcJ:scholar.google.com/&hl=fr&as_sdt=0&pg=3&output=viewport&shm=1 Сейсмические явления в районе Чернобыльской АЭС], [http://www.igph.kiev.ua/journal.html ''Geophysical Journal''], 1998, Vol. 17, {{p.|389-409}} (article du 17 février 1997)</ref>. Des enregistrements sismiques effectués par trois stations militaires auraient mis évidence un séisme de [[Magnitude d'un séisme|magnitude]] 2,6 sur l'échelle de Richter à 01 h 23 min 39 s (moment du pic des courbes), tandis que selon plusieurs rapports l'explosion aurait eu lieu entre 01 h 23 min 49 s et 01 h 23 min 59 s. Cet enchaînement des événements est contesté, et la secousse enregistrée pourrait simplement correspondre à l'onde de choc provoquée par l'explosion du bloc №4. Plusieurs scientifiques qui se sont penchés sur l'hypothèse du tremblement de terre ont ainsi refait les calculs de temps en prenant en compte différentes incertitudes et ont montré qu'il était possible de faire coïncider le moment de l'explosion avec celui de la secousse, ce qui les a cependant amenés à modifier la chronologie « officielle » des événements telle qu'elle a été décrite dans la section précédente<ref>{{en}}{{pdf}} [http://www.rri.kyoto-u.ac.jp/NSRG/reports/kr79/kr79pdf/Gorbachev.pdf The Causes and Scenario of the Chernobyl Accident, and Radioactive Release on the CHNPP Unit-4 Site], Boris Gorbatchev, du centre interdisciplinaire «Sarcophage» ({{lang-ru|Укрытие}}, ''Oukrytié'') de l'[[Académie nationale des sciences d'Ukraine]] ({{ru}} [http://n-t.ru/tp/ie/ca.htm article en version originale]).</ref>{{,}}<ref>{{en}}{{pdf}} [http://www.rri.kyoto-u.ac.jp/NSRG/reports/kr139/pdf/karpan.pdf Analysis of the Version “Earthquake is the Cause of the Chernobyl Accident”], Nikolaï Karpane, ingénieur en chef adjoint de la centrale en 1986 ({{ru}} [http://www.souzchernobyl.org/?section=14&id=562 article en version originale]).</ref>.


* Other deficiencies besides these were noted in the RBMK-1000 reactor design, as were its non-compliance with accepted standards and with the requirements of nuclear reactor safety.
D'autres versions supposent une [[foudre en boule]] artificielle<ref>V. P. Tortchiguine, Institut des problèmes d'informatique de l'[[Académie des sciences de Russie|ASR]], 2006</ref>, la formation d'un [[monopôle magnétique]]<ref>L. I. Ouroutskoïévy, [[Institut Kourtchatov]]</ref>, ou divers actes de sabotage ou de terrorisme.


Both views were heavily [[lobbied]] by different groups, including the reactor's designers, power plant personnel, and the Soviet and Ukrainian governments. According to the IAEA's 1986 analysis, the main cause of the accident was the operators' actions. But according to the IAEA's 1993 revised analysis the main cause was the reactor's design.<ref>{{cite web|url=http://www.insc.anl.gov/neisb/neisb4/NEISB_3.3.A1.html |title=NEI Source Book: Fourth Edition (NEISB_3.3.A1) |publisher=Insc.anl.gov |accessdate=31 July 2010}}</ref> One reason there were such contradictory viewpoints and so much debate about the causes of the Chernobyl accident was that the primary data covering the disaster, as registered by the instruments and sensors, were not completely published in the official sources.
== Gestion de l'accident ==
=== Lutte contre l'incendie (26 avril 1986) ===
Afin d'éteindre l'incendie, Brioukhanov appelle simplement les pompiers. Ceux-ci, venus de [[Pripyat]], située à {{Unité|3|km}} de la centrale, interviennent sur les lieux sans équipement particulier. Cependant, les matières nucléaires ne peuvent être éteintes avec de l'eau. Les pompiers, gravement [[Irradiation|irradiés]], sont évacués et mourront pour la plupart. Les témoignages sur leur souffrance et les conditions de leur mort ont été recueillis par la journaliste biélorusse [[Svetlana Alexievitch]]<ref name="SA">''La Supplication. Tchernobyl, chroniques du monde après l'apocalypse'', Op. cit.</ref>.


Once again, the [[human factor]] had to be considered as a major element in causing the accident. INSAG notes that both the operating regulations and staff handled the disabling of the reactor protection easily enough: witness the length of time for which the ECCS was out of service while the reactor was operated at half power. INSAG's view is that it was the operating crew's deviation from the test program that was mostly to blame. "Most reprehensibly, unapproved changes in the test procedure were deliberately made on the spot, although the plant was known to be in a very different condition from that intended for the test."<ref name=insag7/>{{rp|24}}
Le principal danger de l'incendie est que les dégâts qu'il occasionne à la structure risquent de provoquer l'effondrement du magma en fusion ([[corium]]) dans les parties souterraines qui sont noyées. Un contact entre l'eau et le réacteur en fusion provoquerait une explosion qui disperserait d'immenses quantités de matière radioactive. Des plongeurs sont envoyés afin de fermer les vannes et installer un système de pompage pour vider les salles noyées. L'incendie finira par être éteint par projection dans le brasier de sacs de sable et de plomb depuis des hélicoptères.


As in the previously released report INSAG-1, close attention is paid in report INSAG-7 to the inadequate (at the moment of the accident) "culture of safety" at all levels. Deficiency in the safety culture was inherent not only at the operational stage but also, and to no lesser extent, during activities at other stages in the lifetime of nuclear power plants (including design, engineering, construction, manufacture and regulation). The poor quality of operating procedures and instructions, and their conflicting character, put a heavy burden on the operating crew, including the Chief Engineer. "The accident can be said to have flowed from a deficient safety culture, not only at the Chernobyl plant, but throughout the Soviet design, operating and regulatory organizations for nuclear power that existed at that time."<ref name="insag7"/>{{rp|24}}
Les photos des pompiers de Tchernobyl sont exposées au musée de Tchernobyl de Kiev. On y découvre des [[Héros de l'Union soviétique|héros]] tels que [[Vladimir Pravik]], Victor Kibenok, Vassili Ignatenko, Micolas Titenok, Micolas Vachtchouk et Tichtchoura<ref>{{Lien web |url=http://eraufta.free.fr/spip.php?article41 |titre=Musée de Tchernobyl à Kiev}}</ref>.


== Effects ==
=== Étouffement du cœur du réacteur en fusion (26 avril - 14 mai) ===
{{Main|Chernobyl disaster effects}}
L'incendie éteint, les techniciens de la centrale prennent conscience de l'étendue des dégâts provoqués par la retombée du toit sur le réacteur, qui est désormais fissuré. Le graphite toujours en combustion, mélangé au magma de [[combustible nucléaire|combustible]] qui continue de réagir, dégage un nuage de fumée saturée de particules [[Radioactivité|radioactives]].


=== International spread of radioactive substances ===
Il faut donc au plus vite maîtriser le feu de graphite et faire face à la présence de débris hautement radioactifs projetés aux environs par l'explosion. Ce n'est qu'ensuite que le réacteur pourra être isolé par un sarcophage.
[[File:Kiev-UkrainianNationalChernobylMuseum 15.jpg|thumb|right|Piglet with [[Dipygus]] on exhibit at the [[Ukrainian National Chornobyl Museum]]. Mutations in both humans and other animals increased following the disaster. On farms in [[Narodychi Raion]] of Ukraine, for instance, in the first four years of the disaster nearly 350 animals were born with gross deformities such as missing or extra limbs, missing eyes, heads or ribs, or deformed skulls; in comparison, only three abnormal births had been registered in the five years prior.<ref>{{cite book |last=Marples |first=David R. |title=Ukraine Under Perestroika: Ecology, Economics and the Workers' Revolt |pages=50–51, 76 |year=1991 |location=Basingstoke, Hampshire |publisher=MacMillan Press}}</ref><ref>{{cite web|url=http://www.ncbi.nlm.nih.gov/pubmed/20308207 |title=Malformations in a chornobyl-impacted region |publisher=ncbi.nlm.nih.gov |date=18 March 2011 |accessdate=20 August 2011}}</ref><ref>{{cite web|url=http://www.ncbi.nlm.nih.gov/pubmed/20737614 |title=Chronic radiation exposure in the Rivne-Polissia region of Ukraine: implications for birth defects |publisher=Ncbi.nlm.nih.gov |date=18 March 2011 |accessdate=20 August 2011}}</ref><ref>[http://www.jstor.org/pss/3546765 Developmental Instability of Plants and Radiation from Chernobyl (www.jstor.org)]</ref><ref>{{cite web|url=http://www.ncbi.nlm.nih.gov/pubmed/17439847 |title=Elevated frequency of abnormalities in barn swallows from Chernobyl. |publisher=ncbi.nlm.nih.gov |date=18 March 2011 |accessdate=20 August 2011}}</ref><ref>{{cite web|url=http://www.ncbi.nlm.nih.gov/pubmed/15045533 |title=Cleft lip and cleft palate birth rate in Bavaria before and after the Chernobyl nuclear power plant accident |publisher=ncbi.nlm.nih.gov |date=18 March 2011 |accessdate=20 August 2011}}</ref>
Despite these claims, the World Health Organization states, "children conceived before or after their father's exposure showed no statistically significant differences in mutation frequencies."<ref>{{cite web|url=http://whqlibdoc.who.int/publications/2006/9241594179_eng.pdf |title=WHO Report on Chernobyl Health Effects 2006 -Health Effects of the Chernobyl Accident and Special Health Care Programmes |format=PDF |year=2006|publisher=WHO |accessdate=20 August 2011}}</ref>]]
Four hundred times more radioactive material was released than had been by the [[Atomic bombings of Hiroshima and Nagasaki|atomic bombing]] of [[Hiroshima]]. The disaster released 1/100 to 1/1000 of the total amount of radioactivity released by [[nuclear weapons testing]] during the 1950s and 1960s.<ref>{{cite web|url=http://www.iaea.org/Publications/Booklets/Chernoten/facts.html |title=Ten years after Chernobyl : What do we really know? |publisher=Iaea.org |date=21 September 1997 |accessdate=20 August 2011}}</ref> Approximately 100,000&nbsp;km² of land was significantly contaminated with fallout, the worst hit regions being in Belarus, Ukraine and Russia.<ref name="BulletinChernobyl">Marples, David R. (1996) [http://books.google.co.nz/books?id=xAwAAAAAMBAJ&lpg=PA20&pg=PA20#v=onepage&q&f=false "Chernobyl: The Decade of Despair"] in ''Bulletin of the Atomic Scientists'' May 1996. p. 20.</ref> Slighter levels of contamination were detected over all of Europe except for the [[Iberian Peninsula]].<ref name=torch/><ref name="RFI 24">{{Cite news|language=French| title=Tchernobyl, 20 ans après|publisher=[[Radio France Internationale|RFI]]|date=24 April 2006|accessdate=24 April 2006|url=http://www.rfi.fr/actufr/articles/076/article_43250.asp}}</ref><ref>{{cite web|language=French|title=Path and extension of the radioactive cloudl|publisher=IRSN|accessdate=16 December 2006|url=http://www.irsn.fr/FR/popup/Pages/tchernobyl_animation_nuage.aspx}}</ref>


The initial evidence that a major release of radioactive material was affecting other countries came not from Soviet sources, but from Sweden, where on the morning of 28 April<ref>{{PDFlink|[http://www.iaea.org/Publications/Magazines/Bulletin/Bull283/28302793032.pdf IAEA Bulletin Autumn 1986]|0.38&nbsp;MB}}</ref> workers at the Forsmark Nuclear Power Plant(approximately {{convert|1100|km|mi|-1|abbr=on}} from the Chernobyl site) were found to have radioactive particles on their clothes.<ref>{{cite book | first = Richard Francis | last = Mould | title = Chernobyl Record: The Definitive History of the Chernobyl Catastrophe | isbn = 0-7503-0670-X | publisher = CRC Press | year = 2000 | page = 48}}</ref>
La première opération est réalisée grâce à un ballet d'[[hélicoptère]]s militaires de transport mené par plus de mille pilotes. Il s'agit de larguer dans le trou béant {{Unité|5000|tonnes}} de [[sable]], d'[[argile]], de [[plomb]], de [[bore]], de [[borax]] et de [[dolomite]], un mélange qui permettra de stopper la réaction nucléaire et d'étouffer l'incendie du graphite afin de limiter les rejets radioactifs. La mission est difficile, car elle consiste à larguer les sacs à une hauteur de {{Unité|200|m}} dans un trou de {{Unité|10|m}} de diamètre environ, et ceci le plus vite possible, car malgré l'altitude les personnes reçoivent {{unité|15|[[röntgen]]s}}, soit {{unité|150|mSv}}, en {{unité|8|secondes}}, avec un débit dose de plus de {{unité|100|Sv/h}}. Une telle dose augmente significativement la probabilité de développer un cancer. Dans la seule journée du [[30 avril]], {{Unité|30|tonnes}} de sable et d'argile sont ainsi déversées sur le réacteur.


It was Sweden's search for the source of radioactivity, after they had determined there was no leak at the Swedish plant, that at noon on 28 April led to the first hint of a serious nuclear problem in the western Soviet Union. Hence the evacuation of Pripyat on 27 April 36 hours after the initial explosions, was silently completed before the disaster became known outside the Soviet Union. The rise in radiation levels had at that time already been measured in [[Finland]], but a civil service strike delayed the response and publication.<ref>{{PDFlink|[http://www.stuk.fi/julkaisut/stuk-a/stuk-a217-s.1-198.pdf Ympäristön Radioaktiivisuus Suomessa&nbsp; – 20 Vuotta Tshernobylista]|7.99&nbsp;MB}}</ref>
D'autre part, sur le toit et aux alentours immédiats de la centrale, une cinquantaine d'opérateurs sont chargés dans les premiers jours suivant la catastrophe de collecter les débris très [[Radioactivité|radioactifs]]. Chaque opérateur ne dispose que de {{unité|90|secondes}} pour effectuer sa tâche. Il est exposé à cette occasion à des niveaux de radiations extrêmement élevés dont ne le protègent guère des équipements de protection dérisoires, principalement destinés à l’empêcher d’inhaler des poussières radioactives. Un grand nombre de ces travailleurs en première ligne ont développé par la suite des cancers et sont morts dans les années qui ont suivi. Ces travailleurs ont été surnommés les [[liquidateurs]]. Il a aussi été fait appel à des robots télécommandés français, suisses et allemands mais ceux-ci sont tous tombés en panne à cause des niveaux de radiation exceptionnellement élevés.


<!-- Table of Contamination from Cesium -->
Cependant, le réacteur est toujours actif et la dalle de béton qui le soutient menace de se fissurer.
{| class="wikitable" style="width:80%; margin:auto;"
Plus grave, l'eau déversée par les pompiers pour éteindre l'incendie a noyé les sous-structures, menaçant ainsi l'intégrité et le pilotage des trois autres réacteurs de la centrale. Le professeur [[Vassili Nesterenko]], éminent scientifique nucléaire russe, diagnostique que si le cœur en fusion atteint la nappe d'eau accumulée par l'intervention des pompiers, une explosion de vapeur est susceptible de se produire et de disséminer des éléments radioactifs à une très grande distance. En effet, la fusion du combustible et des structures métalliques a formé un [[corium]] sur le plancher situé sous le réacteur. L'évacuation de la population est recommandée et une nouvelle équipe de pompiers envoyée pour évacuer cette eau en ouvrant les vannes de vidange de la piscine de suppression située sous le plancher de la cavité du réacteur. Ceux-ci travailleront toujours sans protection et y laisseront leur vie.
|+ Areas of Europe contaminated with [[Caesium-137|<sup>137</sup>Cs]]<ref>{{cite web|url=http://www-pub.iaea.org/MTCD/publications/PDF/Pub1239_web.pdf|title=Deposition of radionuclides on soil surfaces 3.1.5}}</ref>
! rowspan="2" | Country
! colspan="2" | 37–185 k [[Becquerel|Bq]]/m<sup>2</sup>
! colspan="2" | 185–555 kBq/m<sup>2</sup>
! colspan="2" | 555–1480 kBq/m<sup>2</sup>
! colspan="2" | &gt;1480 kBq/m<sup>2</sup>
|- style="font-weight:bold; background:#eee;"
! km<sup>2</sup> !! <small>% of country</small> !! km<sup>2</sup> !! <small>% of country</small> !! km<sup>2</sup> !! <small>% of country</small> !! km<sup>2</sup> !! <small>% of country</small>
|- style="background:#ff6868;"
| [[Belarus]] || 29,900 || 14.4 || 10,200 || 4.9 || 4,200 || 2.0 || 2,200 || 1.1
|- style="background:#fbb;"
| [[Ukraine]] || 37,200 || 6.2 || 3,200 || 0.53 || 900 || 0.15 || 600 || 0.1
|- style="background:#ffcfbb;"
| [[Russia]] || 49,800 || 0.29 || 5,700 || 0.03 || 2,100 || 0.01 || 300 || 0.002
|- style="background:#ffdcbb;"
| [[Sweden]] || 12,000 || 2.7 || — || — || — || — || — || —
|- style="background:#ffe5bb;"
| [[Finland]] || 11,500 || 3.4 || — || — || — || — || — || —
|- style="background:#ffefbb;"
| [[Austria]] || 8,600 || 10.3 || — || — || — || — || — || —
|- style="background:#fff8bb;"
| [[Norway]] || 5,200 || 1.3 || — || — || — || — || — || —
|- style="background:#fbfaba;"
| [[Bulgaria]] || 4,800 || 4.3 || — || — || — || — || — || —
|- style="background:#f2fbba;"
| [[Switzerland]] || 1,300 || 3.1 || — || — || — || — || — || —
|- style="background:#e4fbb6;"
| [[Greece]] || 1,200 || 0.91 || — || — || — || — || — || —
|- style="background:#ccf9b6;"
| [[Slovenia]] || 300 || 1.5 || — || — || — || — || — || —
|- style="background:#c4f7b8;"
| [[Italy]] || 300 || 0.1 || — || — || — || — || — || —
|- style="background:#b3f4bb;"
| [[Moldova]] || 60 || 0.2 || — || — || — || — || — || —
|-
! Totals
! colspan="2" | 162,160&nbsp;km<sup>2</sup>
! colspan="2" | 19,100&nbsp;km<sup>2</sup>
! colspan="2" | 7,200&nbsp;km<sup>2</sup>
! colspan="2" | 3,100&nbsp;km<sup>2</sup>
|}


Contamination from the Chernobyl accident was scattered irregularly depending on weather conditions, much of it deposited on mountainous regions such as the [[Alps]], [[Wales]] and the [[Scottish Highlands]], where [[adibatic cooling]] caused rainfall. The resulting patches of contamination could be highly localised, and water-flows across the ground contributed further to large variations in radioactivity over small areas. Sweden and Norway also received heavy fallout when the contaminated air collided with a cold front, bringing rain.<ref name="GouldFire">{{cite book |last=Gould |first=Peter |year=1990 |title=Fire In the Rain: The Dramatic Consequences of Chernobyl |location=Baltimore, MD |publisher=Johns Hopkins Press}}</ref>{{rp|43–44, 78}}
Sous le cœur du réacteur en fusion, la dalle de béton menace de fondre. Au cours de la seconde quinzaine de mai, environ {{nombre|400|mineurs}} des mines des environs de [[Moscou]] et du bassin houiller du [[Donbass]] sont appelé pour creuser un tunnel de {{Unité|167|mètres}} de long menant sous le réacteur<ref>Philippe Coumarinos, ''Tchernobyl après l'apocalypse'', Hachette Littératures, 2000, {{p.|37}}.</ref> afin d'y construire une salle. Un serpentin de refroidissement à l'azote doit y être installé pour refroidir la dalle de béton du réacteur. Les mineurs se relaient {{nombre|24|heures}} sur 24 dans des conditions très difficiles dues à la température élevée et au niveau très important de radiation, le débit de dose à la sortie du tunnel est d’environ {{unité|200|[[röntgen]]s}} par heure. La radioactivité dans le tunnel lui-même est élevée quoique non fatale à court terme, mais la chaleur rend le travail difficile)<ref name="Nesterenko" />. Le circuit de refroidissement ne fut jamais installé et finalement remplacé par du béton pour ralentir et arrêter la descente du cœur fondu.


Rain was purposely [[Cloud seeding|seeded]] over 10,000&nbsp;km<sup>2</sup> of the [[Belorussian SSR]] by the Soviet air force to remove radioactive particles from clouds heading toward highly populated areas. Heavy, black-coloured rain fell on the city of [[Gomel]].<ref>{{cite news|url=http://www.telegraph.co.uk/news/worldnews/1549366/How-we-made-the-Chernobyl-rain.html|title=How we made the Chernobyl rain|last=Gray|first=Richard|date=22 April 2007|work=Telegraph|accessdate=27 November 2009 | location=London}}</ref> Reports from Soviet and Western scientists indicate that Belarus received about 60% of the contamination that fell on the former Soviet Union. However, the 2006 TORCH report stated that half of the volatile particles had landed outside Ukraine, Belarus, and Russia. A large area in Russia south of [[Bryansk]] was also contaminated, as were parts of northwestern Ukraine. Studies in surrounding countries indicate that over one million people could have been affected by radiation.<ref name="WNA-Chernobyl">{{cite web|url= http://world-nuclear.org/info/chernobyl/inf07.html|title=Chernobyl Accident|date=May 2008|work=[[World Nuclear Association]]|accessdate=18 June 2008}}</ref>
Grâce à ces travaux, le niveau de radiation baissera momentanément avant de s'élever à nouveau. Ce n'est que le [[6 mai]] que la radiation absorbée en huit secondes chute enfin à {{unité|1.5|[[röntgen]]}} par heure. Après cette date, ce sont encore {{unité|80|tonnes}} de mélanges qui seront déversées. [[Valeri Legassov]], un haut fonctionnaire soviétique chargé des questions nucléaires, se suicide en voyant la manière dont l'accident a été géré par les autorités, et publie à titre posthume un article dans la ''[[Pravda]]''<ref>Valeri Legassov, « Mon devoir est d'en parler », ''La [[Pravda]]'', {{Date|20|mai|1988}}.</ref>{{,}}<ref>[http://www.dissident-media.org/infonucleaire/testament_legassov.html « Le testament » de Legassov traduit en français].</ref>.


Recently published data from a long-term monitoring program (The Korma Report)<ref>{{cite web|url=http://juwel.fz-juelich.de:8080/dspace/handle/2128/3551 |last=Dederichs|first= H.|coauthors= Pillath, J.; Heuel-Fabianek, B.; Hill, P.; Lennartz, R. |title=Langzeitbeobachtung der Dosisbelastung der Bevölkerung in radioaktiv kontaminierten Gebieten Weißrusslands – Korma-Studie. Vol. 31, series "Energy & Environment" by Forschungszentrum Jülich |publisher=Hdl.handle.net |year=2009 |accessdate=30 January 2011}}</ref> shows a decrease in internal [[Ionizing radiation|radiation exposure]] of the inhabitants of a region in Belarus close to Gomel. Resettlement may even be possible in prohibited areas provided that people comply with appropriate dietary rules.
=== Écroulement final du cœur ===
Le 6 mai, l'émission du réacteur tombe en moins de vingt minutes à 1/50 de sa valeur précédente, puis à quelques [[Curie (unité)|curies]] par jour. L'explication n'en sera connue qu'en 1988, suite aux forages horizontaux faits à cette date à travers le bloc 4 par l'[[Institut Kourtchatov]] : le fond du réacteur avait cédé d’un coup, et le cœur fondu en lave liquide s’était écoulé puis définitivement solidifié {{Unité|20|m}} plus bas dans les infrastructures, dans la piscine de suppression de pression qui avait heureusement été vidée<ref>[http://www.ecolo.org/documents/documents_in_french/Thernobyl-France-03.pdf Données métrologiques et évaluation des risques en France lors de l’accident de Tchernobyl (26 avril 1986). Mise au point historique], Pierre Galle, Raymond Paulin, Jean Coursaget, juin 2003, Éditions scientifiques et médicales Elsevier.</ref>.


In Western Europe, precautionary measures taken in response to the radiation included seemingly arbitrary regulations banning the importation of certain foods but not others. In France some officials stated that the Chernobyl accident had no adverse effects.<ref name="FrenchCom">{{cite web|language=French|url= http://fr.wikipedia.org/wiki/Cons%C3%A9quences_de_la_catastrophe_de_Tchernobyl_en_France|title=Conséquences de la catastrophe de Tchernobyl en France|work=French-speaking Wikipedia|accessdate=18 March 2011}}</ref> Official figures in southern [[Bavaria]] in Germany indicated that some wild plant species contained substantial levels of caesium, which were believed to have been passed onto them by wild boars, a significant number of which had already contained radioactive particles above the allowed level, consuming them.{{clarify|reason=slightly awkward English, suggest clarification of the radioactivity relationship between plants and boars|date=March 2011}}<ref>{{cite web|url= http://sg.news.yahoo.com/afp/20100807/tts-germany-hunting-food-chernobyl-509a08e.html|title='Radioactive boars' on loose in Germany|date=August 2010|work=Agence France Presse|accessdate=9 August 2010}}{{dead link|date=August 2011}}</ref>
Selon [[Vassili Nesterenko]], {{citation|la sédimentation du plutonium fondu sous le réacteur peut provoquer une explosion nucléaire des dizaines d’années après l’accident}}<ref>[http://www.agoravox.fr/tribune-libre/article/tchernobyl-le-pire-devant-nous-55273 Tchernobyl : le pire devant nous ?]</ref>. Par ailleurs, il affirme que les collaborateurs de l’Institut de l’énergie atomique de l’Académie des sciences de Biélorussie ont calculé qu'une explosion atomique d’une puissance de 3 à 5 mégatonnes, une puissance 50 à 80 fois supérieure à celle de l’explosion d’[[Hiroshima]], pouvait se produire les 8 ou 9 mai 1986. Une telle explosion pouvait provoquer des radiolésions massives pour les habitants dans un espace de 300-{{unité|320|km}} de rayon, englobant [[Minsk]], et toute l’[[Europe]] pouvait se trouver victime d’une contamination radioactive rendant la vie normale impossible<ref>[http://www.hns-info.net/article.php3?id_article=8287 Et si Tchernobyl avait explosé comme une bombe ?]</ref>.


=== Radioactive release ===
=== Sarcophage et décontamination (14 mai – décembre 1986) ===
[[File:AirDoseChernobylVector.svg|thumb|350px|Contributions of the various isotopes to the (atmospheric) dose in the contaminated area soon after the accident]]
<!--
Image supprimée ?
[[Image:Chernobyl-Object-Shelter.jpg|thumb|right|300px|Le sarcophage en construction.]]
-->
{{Article détaillé|Liquidateurs}}
Dans les mois qui ont suivi, plusieurs centaines de milliers d'ouvriers ({{formatnum:600000}} environ<ref>Marie Jégo, « "Finir le travail" à Tchernobyl », ''Le Monde'', 19 mars 2011, {{p.|3}}</ref>), les « [[liquidateurs]] » venus d'[[Ukraine]], de [[Biélorussie]], de [[Lettonie]], de [[Lituanie]] et de [[Russie]] arrivent sur le site pour procéder à des nettoyages du terrain environnant. Leur [[radioprotection|protection]] individuelle contre les [[rayonnement ionisant|rayonnements]] était très faible, voire nulle. La décontamination était illusoire dans la mesure où personne ne savait où transférer les gravats déblayés. Beaucoup de villages en Ukraine mais surtout en Biélorussie ont été évacués, détruits et enterrés en raison d'une radioactivité trop élevée.


Like many [[nuclear fuel and reactor accidents|other releases of radioactivity]] into the environment, the Chernobyl release was controlled by the physical and chemical properties of the radioactive elements in the core. While the general population often perceives [[plutonium]] as a particularly dangerous nuclear fuel, its effects are almost eclipsed by those of its [[fission products]]. Particularly dangerous are highly radioactive compounds that accumulate in the food chain, such as some isotopes of [[iodine]] and [[strontium]].
Dans la zone interdite, les liquidateurs étaient chargés de tuer les animaux car la poussière radioactive présente dans leur pelage risquait de contaminer les autres liquidateurs. D'autres unités de liquidateurs procédaient à la décontamination des villages et des camions revenants de la centrale à l'aide de simples jets d'eau, la poussière radioactive recouvrant presque tout.


Two reports on the release of radioisotopes from the site were made available, one by the [[Office of Scientific and Technical Information|OSTI]] and a more detailed report by the [[Organisation for Economic Co-operation and Development|OECD]], both in 1998.<ref>[http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5087075 Chernobyl source term, atmospheric dispersion, and dose estimation], ''EnergyCitationsDatabase'', 1 November 1989</ref><ref name="OECD1998">[http://titania.sourceoecd.org/vl=2140418/cl=16/nw=1/rpsv/~4292/v3n1/s1/p1l OECD Papers Volume 3 Issue 1], ''[[OECD]]'', 2003</ref> At different times after the accident, different [[isotope]]s were responsible for the majority of the external dose. The dose that was calculated is that received from external gamma irradiation for a person standing in the open. The dose to a person in a shelter or the [[internal dosimetry|internal dose]] is harder to estimate.
En août 1986, la décontamination de la centrale et l'isolation du réacteur commençaient. C'est dans ce périmètre que les niveaux de radioactivité étaient les plus élevés. Les véhicules étaient recouverts de plaques de plomb pour protéger leur équipage. Les liquidateurs travaillaient dans une radioactivité si élevée qu'ils ne pouvaient rester sur place que quelques minutes voire secondes. De plus, des morceaux de [[graphite]] qui entouraient les barres de combustible du réacteur en avaient été expulsés lors de l'explosion et étaient éparpillés sur le toit de la centrale et dans ses environs. Ces gravats hautement radioactifs ne pouvaient être récupérés par des êtres humains sans sacrifier leur santé. Dans de telles conditions, des robots téléguidés ont été choisis pour procéder au nettoyage, mais la radioactivité était si élevée qu'ils tombaient en panne après quelques missions. La dernière solution était donc d'envoyer des hommes pour effectuer ce travail. Ces liquidateurs, par la suite appelés "bio-robots", se relayaient à peu près toutes les 30 secondes. Leur mission était de jeter les gravats radioactifs dans des bennes ou dans le réacteur détruit à l'aide de pelles ou, quand il n'y en avait plus, à main nues. Une fois cette lourde tâche effectuée, les travaux d'isolement du réacteur pouvaient commencer. On estime qu'il y avait sur le toit de {{formatnum:10000}} à {{formatnum:12000}} [[röntgen]] par heure ; sachant que la dose mortelle est d'à peu près {{unité|400|röntgens}} en une année, il n'est pas difficile de deviner la cause des différents problèmes de santé que ces hommes ont endurés une fois rentrés chez eux<ref>[[La bataille de Tchernobyl]], film documentaire réalisé par Thomas Johnson 94 minutes, Année : 2006</ref>


The release of radioisotopes from the nuclear fuel was largely controlled by their [[boiling point]]s, and the majority of the [[radioactivity]] present in the core was retained in the reactor.
La solution retenue pour isoler le réacteur détruit est une immense structure d'acier recouvrant les ruines du bâtiment du réacteur. Du fait de la radioactivité, les liquidateurs chargés de sa construction ne pouvaient pas rester longtemps sur place. La construction du désormais célèbre sarcophage de Tchernobyl s'est terminée en octobre 1986. Pour célébrer la victoire de l'[[Union soviétique]] sur la radioactivité, un drapeau rouge a été hissé au-dessus de la tour de refroidissement. Les liquidateurs, heureux d'assister à la fin de ce terrible chantier, écrivaient leur nom sur la dernière pièce métallique fixée au sarcophage. Une seule personne repose désormais sous ce monstre d'acier, [[Valeri Kodemtchouk]], un employé de la centrale mort à son poste dans la salle de pompage, son corps n'a jamais été retrouvé.
* All of the [[noble gas]]es, including [[krypton]] and [[xenon]], contained within the reactor were released immediately into the atmosphere by the first steam explosion.<!-- HOW MUCH, TOTAL ? -->
* 55% of the radioactive [[iodine]] in the reactor, containing about 1760 P[[Bq]] or 400&nbsp;kg of [[I 131|I-131]], was released, as a mixture of [[vapor]], solid particles, and [[Organoiodine compound|organic iodine]] [[Chemical compound|compounds]].
* [[Caesium]] (85 PBq Cs-137<ref>{{cite web|url=http://www.zamg.ac.at/aktuell/index.php?seite=1&artikel=ZAMG_2011-03-24GMT11:24 |title=Unfall im japanischen Kernkraftwerk Fukushima |publisher=ZAMG |date=24 March 2011 |accessdate=20 August 2011}}</ref>) and [[tellurium]] were released in [[particulate|aerosol]] form.
* An early estimate for fuel material released to the environment was 3 ± 1.5%; this was later revised to 3.5 ± 0.5%. This corresponds to the atmospheric emission of 6 t of fragmented fuel.<ref name="OECD1998" />
* Total atmospheric release is estimated at 5200 P[[Bq]].<ref>{{cite web|url=http://www.asahi.com/english/TKY201106040157.html |title=Fukushima radioactive water could overflow soon |work=Asahi Shimbun |location=Japan |date=4 June 2011 |accessdate=20 August 2011}}</ref>


Two sizes of particles were released: small particles of 0.3 to 1.5 micrometers ([[aerodynamic]] diameter) and large particles of 10 micrometers. The large particles contained about 80% to 90% of the released nonvolatile radioisotopes [[zirconium]]-95, [[niobium]]-95, [[lanthanum]]-140, [[cerium]]-144 and the [[transuranic elements]], including [[neptunium]], plutonium and the [[minor actinides]], embedded in a [[uranium oxide]] matrix.
Un hélicoptère [[Mil Mi-8]] s'est écrasé pendant l'édification du sarcophage, entraînant la mort de son équipage. Les pales ont percuté le câble d'une grue. La scène a été filmée par le cinéaste Vladimir Chevtchenko<ref>{{Lien web |url=http://crashrepository.com/?fr/Page69/Post201 |titre=Terrible accident d'hélicoptère à Tchernobyl}}</ref>.


=== Health of plant workers and local people ===
Selon Viatcheslav Grichine, membre de l'[[Union Tchernobyl]], principale organisation des liquidateurs, sur {{nombre|600000|liquidateurs}}, « {{formatnum:25000}} sont morts et {{formatnum:70000}} restés handicapés en Russie, en [[Ukraine]] les chiffres sont proches et en [[Biélorussie]] {{formatnum:10000}} sont morts et {{nombre|25000|handicapés}} »<ref name="Monde">[http://www.lemonde.fr/web/article/0,1-0@2-3228,36-759215,0.html « Selon un rapport indépendant, les chiffres de l'ONU sur les victimes de Tchernobyl ont été sous-estimés »] in ''[[Le Monde]]'' du {{Date|7|avril|2006}}</ref>.
{{See also|Deaths due to the Chernobyl disaster}}
[[File:Chernobyl Museum Kiev.jpg|thumb|Children of [[Liquidator (Chernobyl)|the liquidators]] as photographed by the Chernobyl Museum in [[Kiev, Ukraine]]]]
[[File:Chernobil Avaria.jpg|thumb|Medal for valour and compassion.]]
In the aftermath of the accident, 237 people suffered from [[acute radiation sickness]] (ARS), of whom 31 died within the first three months.<ref name="Hallenbeck 1994 15"/><ref>Mould 2000, p. 29. "The number of deaths in the first three months were 31<nowiki>[.]</nowiki>"</ref> Most of the victims were fire and rescue workers trying to bring the accident under control, who were not fully aware of how dangerous the exposure to [[radiation]] in the [[smoke]] was. Whereas, in the World Health Organization's 2006 report of the Chernobyl Forum expert group on the 237 emergency workers who were diagnosed with ARS, ARS was identified as the cause of death for 28 of these people within the first few months after the disaster.


No further ARS-related deaths were identified in the general population affected by the disaster. Of the 72,000 Russian Emergency Workers being studied, 216 non-cancer deaths are attributed to the disaster, between 1991 and 1998.{{Citation needed|date=May 2011}} Of all 66,000 Belarusian emergency workers, by the mid-1990s only 150 (roughly 0.2%) were reported by their government as having died. In contrast, 5,722 casualties were reported among Ukrainian clean-up workers up to the year 1995, by the National Committee for Radiation Protection of the Ukrainian Population.<ref name="BulletinChernobyl"/>
=== Évacuation tardive des populations ===
[[Fichier:View of Chernobyl taken from Pripyat.JPG|thumb|right|250px|Vue de la centrale nucléaire depuis la ville de [[Pripyat]], toute proche.]]


The latency period for solid cancers caused by excess radiation exposure is 10 or more years; thus at the time of the WHO report being undertaken, the rates of solid cancer deaths were no greater than the general population.{{Citation needed|date=May 2011}}{{dubious|No solid cancers by 2006?|date=October 2012}} Some 135,000 people were evacuated from the area, including 50,000 from Pripyat.{{Citation needed|date=May 2011}}
Le {{Date|26|avril|1986}}, la population locale n’est pas prévenue de l'accident et poursuit ses activités habituelles sans prendre de précautions particulières. Les habitants de [[Pripyat]], petite ville située à {{unité|3|km}} de Tchernobyl, ne sont pas immédiatement informés sur la gravité de la situation. Ils vivront une journée comme les autres, envoyant leurs enfants à l'école, les emmenant jouer au square. Ils ne seront évacués que 30 heures après l'accident<ref>''Tchernobyl forever'', documentaire d’Alain de Halleux (France, 2011, 55 min)</ref>. Á Pripyat toujours, {{nombre|900|élèves}} âgés de 10 à {{unité|17|ans}} participent à un « marathon de la paix » qui fait le tour de la centrale. Un [[Cinéma et vidéo amateurs|film amateur]] [[Pellicule photographique|argentique]] d'époque montre de manière très flagrante que Pripyat est déjà contaminée gravement : la radioactivité y a formé de nombreux flashs blancs au rythme de plusieurs par seconde<ref>{{Lien web |url=http://www.chernobyl-day.org/article/la-bataille-de-tchernobyl |titre=La bataille de Tchernobyl |auteur=Thomas Johnson |date=documentaire, 2006 |consulté le=29 mars 2011}}</ref>.


=== Residual radioactivity in the environment ===
L'évacuation débute le [[27 avril]] et les {{nombre|45000|habitants}} de Pripyat sont les premiers concernés. Ils n'ont été informés que quelques heures auparavant par la radio locale, qui leur demandait de n'emporter que le strict minimum et leur promettait qu'ils seraient de retour sous 2 ou {{unité|3|jours}}. Emmenés par l'armée, ils sont hébergés dans des conditions précaires dans la région de [[Polesskoie]], elle-même gravement touchée par les [[rayonnement ionisant|radiations]]. Les premiers [[symptôme]]s d'une forte exposition aux radiations ([[Nausée (médecine)|nausées]], [[diarrhée]]s, etc.) commencent à apparaître déjà chez beaucoup d'entre eux.


==== Rivers, lakes and reservoirs ====
Au début du mois de mai, les {{nombre|115000|personnes}} habitant dans un rayon de {{Unité|30|km}} autour du site sont évacuées, opération qui se poursuit jusqu'à la fin du mois d'août. Chaque évacué reçoit une indemnité de {{unité|4000|[[rouble]]s}} par adulte<ref>Cette somme correspond à un an de salaire moyen</ref> et {{unité|1500|roubles}} par enfant. Les évacuations touchent au total environ {{nombre|250000|personnes}} de [[Biélorussie]], de [[Russie]] et d’[[Ukraine]]. [[Slavoutich]], une ville comptant plus de {{nombre|30000|habitants}} à la fin de l'année&nbsp;[[1987]], est créée ''[[ex nihilo]]''.
[[File:Chernobyl, Ukraine.jpg|thumb|[[Earth Observing-1]] image of the reactor and surrounding area in April 2009]]


The Chernobyl nuclear power plant is located next to the Pripyat River, which feeds into the Dnieper reservoir system, one of the largest surface water systems in Europe, which at the time supplied water to Kiev's 2.4 million residents, and was still in spring flood when the accident occurred.<ref name="MarplesImpact">{{cite book |last=Marples |first=David R. |year=1988 |title=The Social Impact of the Chernobyl Disaster |location=New York, NY |publisher=St Martin’s Press}}</ref>{{rp|60}} The radioactive contamination of aquatic systems therefore became a major problem in the immediate aftermath of the accident.<ref name=smithber05>Chernobyl: Catastrophe and Consequences, Springer, Berlin ISBN 3-540-23866-2</ref> In the most affected areas of Ukraine, levels of radioactivity (particularly from radionuclides <sup>131</sup>I, <sup>137</sup>Cs and <sup>90</sup>Sr) in drinking water caused concern during the weeks and months after the accident,<ref name=smithber05/> though officially it was stated that all contaminants had settled to the bottom "in an insoluble phase" and would not dissolve for 800–1,000 years.<ref name="MarplesImpact"/>{{rp|64}} Guidelines for levels of radioiodine in drinking water were temporarily raised to 3,700 [[Bequerel|Bq]]/L, allowing most water to be reported as safe,<ref name=smithber05/> and a year after the accident it was announced that even the water of the Chernobyl plant's cooling pond was within acceptable norms. Despite this, two months after the disaster the Kiev water supply was abruptly switched from the Dnieper to the Desna River.<ref name="MarplesImpact"/>{{rp|64–5}} Meanwhile, massive silt traps were constructed, along with an enormous 30m-deep underground barrier to prevent groundwater from the destroyed reactor entering the Pripyat River.<ref name="MarplesImpact"/>{{rp|65–7}}
Quatre « [[Géographie|zones]] de [[contamination radioactive]] » décroissantes sont définies. Deux d'entre-elles ne sont pas évacuées, mais les habitants disposent d'un suivi [[Médecine|médical]] et de primes de [[risque]].
Il y a eu {{nombre|50000|personnes}} évacuées de Pripyat.


[[Bio-accumulation]] of radioactivity in fish<ref name=kryshev95>Kryshev, I.I., Radioactive contamination of aquatic ecosystems following the Chernobyl accident. Journal of Environmental Radioactivity, 1995. 27: p. 207–219</ref> resulted in concentrations (both in western Europe and in the former Soviet Union) that in many cases were significantly above guideline maximum levels for consumption.<ref name=smithber05/> Guideline maximum levels for radiocaesium in fish vary from country to country but are approximately 1,000 Bq/kg in the [[European Union]].<ref name=euregs>EURATOM Council Regulations No. 3958/87, No. 994/89, No. 2218/89, No. 770/90</ref> In the [[Kiev Reservoir]] in Ukraine, concentrations in fish were several thousand Bq/kg during the years after the accident.<ref name=kryshev95/>
=== Gestion administrative et politique ===
==== Autorités locales et échelons bureaucratiques ====
Dans les premières heures qui suivent la catastrophe, l'opacité créée par les différents échelons administratifs est totale. [[Mikhaïl Gorbatchev]] n'est informé officiellement que le [[27 avril]]. Avec l'accord du [[Politburo]], il est forcé de faire appel au [[KGB]] pour obtenir des informations fiables<ref>Documentaire France 3 / Play Film, témoignage de Gorbatchev</ref>. Le rapport qui lui est transmis parle d'une explosion, de la mort de deux hommes, de l'arrêt des tranches 1,2 et 3. Les rapports faits au dirigeant soviétique sont entourées d'« un luxe de précautions oratoires »<ref>Mikhaïl Gorbatchev, ''Mémoires'', Le Rocher, 1997.</ref>.


In small [[closed lake|"closed" lakes]] in Belarus and the Bryansk region of Russia, concentrations in a number of fish species varied from 100 to 60,000 Bq/kg during the period 1990–92.<ref name=fleishman94>Fleishman, D.G., et al., Cs-137 in fish of some lakes and rivers of the [[Bryansk]] region and North-West Russia in 1990–1992. Journal of Environmental Radioactivity, 1994. 24: p. 145–158</ref> The contamination of fish caused short-term concern in parts of the UK and Germany and in the long term (years rather than months) in the affected areas of Ukraine, Belarus, and Russia as well as in parts of Scandinavia.<ref name=smithber05/>
==== Rôle des pays occidentaux ====
Le [[28 avril]] au matin, un niveau de [[radioactivité]] anormal est constaté dans la [[centrale nucléaire de Forsmark]] en [[Suède]], qui entraîne l'évacuation immédiate de l'ensemble du site par crainte d'une fuite radioactive interne. Mais les premières analyses montrent que l'origine de la [[Contamination (toxicologie)|contamination]] est extérieure à la centrale et vient de l'est. L'après-midi du même jour, l'[[Agence France-Presse]] rapporte l'incident.


==== Groundwater ====
À partir de ce moment, toutes les [[hypothèse]]s sont formulées par les [[média]]s occidentaux. Les informations arrivent au compte-goutte (interview à [[Kiev]] de personnes évacuées de la zone, etc.). L'agence de presse [[Tass (agence de presse)|TASS]] parle le [[29 avril]] d'un accident « de gravité moyenne survenu à la centrale nucléaire de Tchernobyl » tandis que les photos satellites du site de la centrale fournissent les premières images de la catastrophe.
[[File:Chernobyl radiation map 1996.svg|thumb|350px|Map of radiation levels in 1996 around Chernobyl]]


[[Groundwater]] was not badly affected by the Chernobyl accident since [[radionuclide]]s with short half-lives decayed away long before they could affect groundwater supplies, and longer-lived radionuclides such as radiocaesium and radiostrontium were [[adsorption|adsorbed]] to surface [[soil]]s before they could transfer to groundwater.<ref name=iaea06>{{PDFlink|[http://www-pub.iaea.org/MTCD/publications/PDF/Pub1239_web.pdf "Environmental consequences of the Chernobyl accident and their remediation"]}} IAEA, Vienna</ref> However, significant transfers of radionuclides to groundwater have occurred from [[waste disposal]] sites in the {{convert|30|km|mi|0|abbr=on}} exclusion zone around Chernobyl. Although there is a potential for transfer of radionuclides from these disposal sites off-site (i.e. out of the {{convert|30|km|mi|0|abbr=on}} exclusion zone), the IAEA Chernobyl Report<ref name=iaea06/> argues that this is not significant in comparison to current levels of [[washout]] of surface-deposited radioactivity.
==== Communication de crise ====
Pour [[Gorbatchev]], la catastrophe constitue la première mise en œuvre de la politique de [[glasnost]] (« transparence ») présentée au cours du XXVII{{e}} congrès du [[PCUS]] ([[25 février]] – {{Date|6|mars|1986}}), et qui a rencontré de fortes oppositions. Dans son esprit, l'accident constitue « un nouvel argument fort en faveur de réformes profondes. »


==== Flora and fauna ====
Le [[14 mai]], Gorbatchev prononce une allocution télévisée dans laquelle il reconnaît l'ampleur de la catastrophe et admet que des dysfonctionnements profonds ont eu pour conséquence que « ni les politiques ni même les scientifiques n'étaient préparés à saisir la portée de cet événement. » Cette volonté de [[transparence]] ne va pas sans une très importante [[propagande]] autour des travaux réalisés, destinée à mettre en valeur la « bataille contre l'atome ». Une banderole apposée sur le réacteur éventré proclame que « le peuple soviétique est plus fort que l'atome » tandis qu'un [[drapeau rouge]] est fixé au sommet de la tour d'aération de la centrale à l'issue des travaux de déblaiement.
[[File:Red Forest Hill.jpg|thumb|right|After the disaster, four square kilometers of [[pine]] forest directly downwind of the reactor turned reddish-brown and died, earning the name of the "[[Red Forest]]".<ref name=bbcmulvey>[http://news.bbc.co.uk/2/hi/europe/4923342.stm ''Wildlife defies Chernobyl radiation''], by Stefen Mulvey, BBC News</ref>]]
After the disaster, four square kilometers of [[pine]] forest directly downwind of the reactor turned reddish-brown and died, earning the name of the "[[Red Forest]]".<ref name=bbcmulvey/> Some animals in the worst-hit areas also died or stopped reproducing. Most [[domestic animal]]s were removed from the exclusion zone, but horses left on an island in the Pripyat River {{convert|6|km|mi|0|abbr=on}} from the power plant died when their [[thyroid]] glands were destroyed by radiation doses of 150–200&nbsp;Sv.<ref name=iaea1991>The International Chernobyl Project Technical Report, IAEA, Vienna, 1991</ref> Some cattle on the same island died and those that survived were stunted because of thyroid damage. The next generation appeared to be normal.<ref name=iaea1991/>


A robot sent into the reactor itself has returned with samples of black, [[melanin]]-rich [[radiotrophic fungus|radiotrophic fungi]] that are growing on the reactor's walls.<ref>{{cite web|url=http://www.sciencedaily.com/releases/2007/05/070522210932.htm |title='Radiation-Eating' Fungi Finding Could Trigger Recalculation Of Earth's Energy Balance And Help Feed Astronauts}}</ref>
Pendant 15 ans, seuls les 56 premiers décès seront reconnus par les autorités<ref>[http://www.chernobyl-day.org/article/la-bataille-de-tchernobyl La Bataille de Chernobyl Part 2 11 minutes]</ref>.


Of the 440,350 wild boar killed in the 2010 hunting season in Germany, over 1,000 were found to be contaminated with levels of radiation above the permitted limit of 600 bequerels, due to residual radioactivity from Chernobyl.<ref>{{cite web|url=http://www.welt.de/wissenschaft/article12874184/Deutsche-Wildschweine-immer-noch-verstrahlt.html |title=25 Jahre Tschernobyl: Deutsche Wildschweine immer noch verstrahlt – Nachrichten Wissenschaft – WELT ONLINE |language={{de icon}} |work=Die Welt |date=18 March 2011 |accessdate=20 August 2011}}</ref> Germany has "banned wild game meat because of contamination linked to radioactive mushrooms".<ref name="canberratimes1">{{cite web |url=http://www.canberratimes.com.au/news/world/world/general/worlds-nuclear-power-industry-in-decline/2145234.aspx# |title=World's nuclear power industry in decline |author=Rosslyn Beeby |date=27 April 2011 |work=Canberra Times }}</ref>
====Gestion des déchets====
Un grand volume de déchets hautement radioactifs a été produit et stocké en vrac dans un conditionnement plus ou moins durable. Une partie de ces déchets a été conservée sous le ''sarcophage'' ; une autre (l'essentiel) a été stockée en surface (véhicules aujourd'hui souvent démembrés ou volés), ou enfouie dans de nombreux dépôts et tranchées (au nombre de 1000 rien qu'en Ukraine où le volume de déchets a été évalué à environ {{Citation|un million de mètres cubes et une radioactivité de 14 000 térabecquerels}}<ref name=IRSN_BD2000>IRSN, Christine Brun-Yaba & Gérard Deville-Cavelin, Michel Colin (Laboratoire d’Études des Stockages de Surface, [http://www.irsn.fr/FR/Larecherche/publications-documentation/aktis-lettre-dossiers-thematiques/RST/RA-DPRE-2000/Documents/RAdpre00-prog7.pdf Caractérisation des sites de stockage de déchets issus de Tchernobyl], voir pages 6-7 </ref>. Avec l'aide de la France et de l'Allemagne, une base de donnée a été créée (de 1999 à mi-2000<ref name=IRSN_BD2000/>) pour décrire et localiser ces déchets et permettre leur suivi dans les décennies et siècles à venir pour les 3 États principalement concernés<ref name=IRSN_BD2000/> à partir des informations qu'ils ont pu ou voulu fournir ; avant d'être complétée au fur et à mesure des données nouvelles (via 426 enregistrements<ref name=IRSN_BD2000/>, la base contenait (en [[2000]]) l'équivalent de 45 % environ des dépôts estimés dans les zones contaminées<ref name=IRSN_BD2000/>). Des incohérences de données ont été détectées entre les versions russes et anglaises, et ''{{Citation|des lacunes importantes dans les données sur les émetteurs alpha et bêta rendent délicate la classification de certains déchets}}'' précisent les gestionnaires de la base<ref name=IRSN_BD2000/>.


The Norwegian Agricultural Authority reported that in 2009 a total of 18,000 livestock in Norway needed to be given uncontaminated feed for a period of time before slaughter in order to ensure that their meat was safe for human consumption. This was due to residual radioactivity from Chernobyl in the plants they graze on in the wild during the summer. The after-effects of Chernobyl were expected to be seen for a further 100 years, although the severity of the effects would decline over that period.<ref>{{cite web|url=https://www.slf.dep.no/no/erstatning/palegg-og-restriksjoner/radioaktivitet/Fortsatt+nedforing+etter+radioaktivitet+i+dyr+som+har+v%C3%A6rt+p%C3%A5+utmarksbeite.10694.cms |title=Fortsatt nedforing etter radioaktivitet i dyr som har vært på utmarksbeite – Statens landbruksforvaltning |publisher=SLF |date=30 June 2010 |accessdate=20 August 2011}}</ref> In Britain and Norway, as of 2011, "slaughter restrictions remain for sheep raised on pasture contaminated by radiation fallout".<ref name="canberratimes1"/>
== Conséquences ==
L'[[IRSN]] a publié en 2007 un rapport sur {{citation|Les accidents dus aux rayonnements ionisants}}<ref name="accidents IRSN">, Nénot, Jean-Claude, et Patrick Gourmelon, &laquo Les accidents dus aux rayonnements ionisants - le bilan sur un demi-siècle &raquo ; Édition du 15 février 2007, [http://www.irsn.fr IRSN]. [http://www.irsn.fr/FR/base_de_connaissances/librairie/Documents/documents_reference/IRSN_reference_les_accidents_dus_aux_rayonnements_ionisants.pdf Document en ligne].</ref> qui consacre cinq pages à une synthèse des conséquences de la catastrophe de Tchernobyl. {{citation|Des surfaces importantes de trois territoires de l’Ukraine, de la Biélorussie et de la Russie (correspondant à plus de sept millions d’habitants) ont présenté des dépôts de [[césium 137]] supérieurs à {{unité|37|kBq/m|2}} ({{unité|1|Ci/km|2}}) :
# la région comprise dans un cercle approximatif de {{Unité|100|km}} de rayon autour de la centrale,
# la région de [[Gomel]], de [[Moguilev]] et de [[Briansk]] à environ {{Unité|200|km}} au nord-nord-est,
# la région de [[Kalouga]], [[Toula]] et [[Orel]] à {{Unité|500|km}} au nord-est.}}<ref name="accidents IRSN"/>


== Human impact ==
En référence à l'état de peur et d'anxiété éprouvé par les populations suite à la catastrophe (IRSN (2007)<ref name="accidents IRSN"/>, {{p.|32}}), et aux conséquences médicales de ce stress, les auteurs considèrent que : {{citation|Les conséquences de l’accident de Tchernobyl non liées directement à l’exposition de la population aux rayonnements l’emportent sans doute, et de loin, sur les conséquences de l’irradiation. Pour avoir négligé ce point important, pourtant connu et parfaitement décrit avant l’accident, les autorités sanitaires et les milieux scientifiques internationaux se sont souvent trouvés pris en défaut, et leurs interprétations variées et discordantes ont profondément entaché leur crédibilité.}}<ref name="accidents IRSN"/>
{{Main|Chernobyl disaster effects}}


[[File:Devant OMS 5.jpg|thumb|Demonstration on Chernobyl day near [[WHO]] in Geneva]]
=== Humaines et matérielles ===
The Chernobyl Forum first met on 3 February 2003 for a three day meeting. It consisted of the International Atomic Energy Agency (IAEA), other United Nations organizations (FAO, UN-OCHA, UNDP, UNEP, UNSCEAR, WHO, and the [[World Bank]]), and the governments of Belarus, Russia, and Ukraine. A second meeting was held on 10–11 March 2004, and a third on 18–20 April 2005. The aim of the Forum was to "scientifically clarify the radiological environmental and health consequences of the Chernobyl accident, to provide advice on and to contribute to a scientifically sound remediation and health care programmes, and to consider the necessity of, and opportunities for continued research/learning lessons."<ref name="Chernobyl Forum">{{cite web|url=http://www-ns.iaea.org/meetings/rw-summaries/chernobyl_forum.htm |title=Chernobyl Forum summaries |publisher=International Atomic Energy Agency |accessdate=31 July 2010}}</ref>


===Thyroid cancer===
[[Image:Médaille Tchernobyl goutte de sang.jpg|left|150px|thumb|Une des médailles remises aux [[liquidateurs]] : le symbole représente une goutte de sang traversée par les rayonnements [[rayon alpha|alpha]], [[rayon bêta|bêta]] et [[rayon gamma|gamma]].]]
[[File:Belarus radioactivity and thyroid cancer.png|thumb|300px|[[Thyroid cancer]] incidence in children and adolescents from Belarus after the Chernobyl accident<br>Yellow: Adults (19–34)<br>Blue: Adolescents (15–18)<br>Red: Children (0–14)]]
[[Image:Pripyat, Ukraine, abandoned city.jpg|thumb|250px|right|[[Pripyat]], devenue une ville fantôme.]]
A report was published by Chernobyl Forum in 2005 that revealed thyroid cancer among children to be one of the main health impacts from the Chornobyl accident. In that publication more than 4000 cases were reported, and that there was no evidence of an increase in solid cancers or leukemia. It said that there was an increase in psychological problems among the affected population. The report says it is impossible to reliably predict the number of fatal cancers arising from the incident as small differences in assumptions can result in large differences in the estimated health costs. The report says it represents the consensus view of the eight UN organisations.<ref name = "Chernobyl Forum report">{{cite web|work=Chernobyl Forum assessment report|url=http://www.iaea.org/Publications/Booklets/Chernobyl/chernobyl.pdf|title=Chernobyl's Legacy: Health, Environmental and Socio-Economic Impacts|accessdate=21 April 2012|publisher=Chernobyl Forum}}</ref>
<br />
On the death toll of the accident, the report states that twenty-eight emergency workers ("liquidators") died from [[acute radiation syndrome]] including [[beta burn]]s and 15 patients died from thyroid cancer in the following years, and it roughly estimated that cancer deaths caused by Chernobyl may reach a total of about 4,000 among the 5&nbsp;million persons residing in the contaminated areas, the report projected cancer mortality "increases of less than one per cent" (~0.3%) on a time span of 80 years, cautioning that this estimate was "speculative" since at this time only a few tens of cancer deaths are linked to the Chernobyl disaster.<ref name = "Chernobyl Forum report"/>
<br />
According to UNSCEAR, up to the year 2005 more than 6000 cases of thyroid cancer were reported in children and adolescents exposed at the time of the accident, a number that is expected to increase. They concluded that was no other evidence of major health impacts from the radiation exposure.<ref name="Chernobyl health effects">{{cite web|url=http://www.unscear.org/unscear/en/chernobyl.html#Health |title=UNSCEAR&nbsp;– Chernobyl health effects |publisher=Unscear.org |accessdate=23 March 2011}}</ref>
<br />
Well-differentiated [[thyroid cancer]]s are generally treatable,<ref>Rosenthal, Elisabeth. (6 September 2005) [http://www.nytimes.com/2005/09/06/international/europe/06chernobyl.html?_r=1&pagewanted=print&oref=slogin Experts find reduced effects of Chernobyl]. nytimes.com. Retrieved 14 February 2008.</ref> and when treated the five-year survival rate of thyroid cancer is 96%, and 92% after 30 years.<ref>{{cite web|url=http://www.genzyme.ca/thera/ty/ca_en_p_tp_thera-ty.asp |title=Thyroid Cancer |publisher=Genzyme.ca |accessdate=31 July 2010}}</ref> UNSCEAR had reported 15 deaths from thyroid cancer in 2011.<ref>{{cite web|date=23 April 2011|title=CHERNOBYL at 25th anniversary Frequently Asked Questions April 2011|publisher=World Health Organisation|accessdate=14 April 2012|url=http://www.who.int/ionizing_radiation/chernobyl/20110423_FAQs_Chernobyl.pdf}}</ref> The [[International Atomic Energy Agency]] (IAEA) also states that there has been no increase in the rate of [[birth defect]]s or abnormalities, or [[solid cancer]]s (such as lung cancer) corroborating UNSCEAR's assessments.<ref name="Chernobyl's Legacy">{{cite web|url=http://www.iaea.org/Publications/Booklets/Chernobyl/chernobyl.pdf |title=Chernobyl's Legacy: Health, Environmental and Socia-Economic Impacts and Recommendations to the Governments of Belarus, Russian Federation and Ukraine |format=PDF|publisher=International Atomic Energy Agency – The Chernobyl Forum: 2003–2005|accessdate=31 July 2010}}</ref> UNSCEAR does raise the possibility of long term genetic defects, pointing to a doubling of radiation-induced minisatellite [[mutation]]s among children born in 1994.<ref>{{cite web|url=http://www.unscear.org/docs/chernobylherd.pdf |title=Excerpt from UNSCEAR 2001 REPORT ANNEX – Hereditary effects of radiation|format=PDF |accessdate=20 August 2011}}</ref> However, the risk of thyroid cancer associated with the Chernobyl accident is still high according to published studies.<ref name="Bogdanova T">{{cite journal |author=Bogdanova TI, Zurnadzhy LY, Greenebaum E, McConnell RJ, Robbins J, Epstein OV, Olijnyk VA, Hatch M, Zablotska LB, Tronko MD. |title=A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident: pathology analysis of thyroid cancer cases in Ukraine detected during the first screening (1998-2000). |journal=Cancer |volume=11 |issue=107 |pages=2599-66|year=2006 |month= |pmid=17083123 |doi=10.1002/cncr.22321 |url=}}</ref><ref name="Dinets">{{cite journal |author=Dinets A, Hulchiy M, Sofiadis A, Ghaderi M, Höög A, Larsson C, Zedenius J. |title=Clinical, Genetic and Immunohistochemical Characterization of 70 Ukrainian Adult Cases with Post-Chornobyl Papillary Thyroid Carcinoma. |journal=Eur J Endocrinol |volume=166 |year=2012 |pages= 1049–60|pmid=22457234 |doi=10.1530/EJE-12-0144 }}</ref>


===Other health disorders===
Le rapport de 2007 de l'[[Institut de radioprotection et de sûreté nucléaire|IRSN]] <ref name="accidents IRSN" /> rapporte que dans la semaine qui a suivi l’accident, les autorités soviétiques ont procédé à l’évacuation des habitants des localités des environs, soit plus de {{nombre|135000|personnes}}, qui ont dû être relogées ultérieurement. Comme le note Philippe Coumarianos : « entre le 27 avril et le 7 mai, deux villes et soixante-dix localités, situées dans un rayon de {{unité|30|kilomètres}} autour de la centrale, furent vidées de leurs habitants. Cette zone d'exclusion couvre une superficie de près de {{unité|300000|hectares}}, à cheval sur les territoires ukrainien et biélorusse. (…) Au total, environ {{nombre|250000|personnes}} quittèrent leurs foyers<ref>Philippe Coumarianos, ''op. cit.'', {{p.|81-83}}.</ref> ».
Fred Mettler, a radiation expert at the University of New Mexico, puts the number of worldwide cancer deaths outside the highly contaminated zone at "perhaps" 5000, for a total of 9000 Chernobyl-associated fatal cancers, saying "the number is small (representing a few percent) relative to the normal spontaneous risk of cancer, but the numbers are large in absolute terms".<ref>{{cite web|last=Mettler |first=Fred |url=http://www.iaea.org/Publications/Magazines/Bulletin/Bull472/htmls/chernobyls_legacy2.html |title=IAEA Bulletin Volume 47, No. 2 – Chernobyl's Legacy |publisher=Iaea.org |accessdate=20 August 2011}}</ref> The same report outlined studies based in data found in the Russian Registry from 1991 to 1998 that suggested that "of 61,000 Russian workers exposed to an average dose of 107 mSv about 5% of all fatalities that occurred may have been due to radiation exposure."<ref name = "Chernobyl Forum report"/>


The report went into depth about the risks to [[mental health]] of exaggerated fears about the effects of radiation.<ref name = "Chernobyl Forum report"/> According to the IAEA the "designation of the affected population as "victims" rather than "survivors" has led them to perceive themselves as helpless, weak and lacking control over their future". The IAEA says that this may have led to behaviour that has caused further health effects.<ref name="IAEA-situation">{{cite web|url=http://www.iaea.org/blog/Infolog/?page_id=25 |title=What's the situation at Chernobyl? |publisher=Iaea.org |accessdate=20 August 2011}}</ref>
Outre l'évacuation de la [[zone d'exclusion nucléaire]] qui a constitué un traumatisme majeur pour les populations vivant de l'[[agriculture]], le sort des ''samosioli'' est également à mentionner : ''Samosioli'' (ou « colons individuels » en français) est le nom donné aux personnes revenues vivre dans la zone d'exclusion malgré les interdictions, et qui y vivent en [[autarcie]] de leur lopin de terre. Leur nombre est estimé à un millier<ref name="NW" />. D'autre part, un trafic s'est développé : il concerne des objets et mobiliers laissés à l'abandon (parfois fortement contaminés), le bois de chauffage abattu illégalement et le [[braconnage]] des animaux qui ont proliféré depuis l'évacuation de la zone. Enfin, des agences de tourisme spécialisées dans la visite du site attirent des « touristes nucléaires » venus du monde entier.


Fred Mettler commented that 20 years later "The population remains largely unsure of what the effects of radiation actually are and retain a sense of foreboding. A number of adolescents and young adults who have been exposed to modest or small amounts of radiation feel that they are somehow fatally flawed and there is no downside to using illicit drugs or having unprotected sex. To reverse such attitudes and behaviors will likely take years although some youth groups have begun programs that have promise."<ref>{{cite web|last=Mettler |first=Fred |url=http://www.iaea.org/Publications/Magazines/Bulletin/Bull472/htmls/chernobyls_legacy2.html |title=Chernobyl's living legacy |publisher=Iaea.org |accessdate=20 August 2011}}</ref> In addition, disadvantaged children around Chernobyl suffer from health problems that are attributable not only to the Chernobyl accident, but also to the poor state of post-Soviet health systems.<ref name="Chernobyl's Legacy"/>
En 2000, la plus grande partie des zones contaminées ne présente plus de danger particulier d'irradiation. La dose causée par les [[retombées radioactives]] de l'accident ne dépasse encore {{nombre|1|[[Sievert|millisievert]]}} par an que dans les zones qui avaient été fortement contaminées (zones de contrôle permanent), ce qui concerne {{unité|100000|personnes}}<ref name="IAEA" />. C'est l'ordre de grandeur du niveau d'exposition dû à la radioactivité naturelle ({{unité|2.5|[[Sievert|mSv]]/an}} en moyenne, jusqu'à dix fois plus dans certaines régions, sans effets détectables sur les populations). Le 5 septembre 2005, un rapport de {{nombre|600|pages}} a été produit à l'occasion du ''Forum Tchernobyl'' organisé à [[Vienne (Autriche)|Vienne]] réunissant une centaine d'experts sous l'égide notamment de l'[[AIEA]], de l'[[OMS]] et du [[PNUD]] : {{citation|Jusqu'à 4 000 personnes pourraient, à terme, décéder des suites d'une radio-exposition consécutive à l’accident.}} Élisabeth Cardis, chef du groupe rayonnement et cancer au [[Centre international de recherche sur le cancer|Circ]] de Lyon, estime que, si l'on prend en compte l'ensemble des habitants de la zone la plus touchée par les retombées radioactives et l'ensemble des {{nombre|600000|"liquidateurs"}}, soit environ {{nombre|5|millions}} de personnes, {{citation|le nombre de risque de décès risque d'être plus proche de 10 000}}. Une {{par qui|autre étude}} portant sur toute la population européenne, soit près de {{nombre|572|millions}} de personnes, estime que {{citation|d'ici 2065, 20 000 à 35 000 cancers seront directement consécutifs à l'accident}}<ref>''Tchernobyl : le vrai bilan reste à faire'', Caroline Tourbe, [[Science et Vie]], [[Avril 2006]], pages 112 à 114.</ref>.


The [[United Nations Scientific Committee on the Effects of Atomic Radiation]] (UNSCEAR), part of the Chernobyl Forum, have produced their own assessments of the radiation effects.<ref name=UNSCEAR>{{cite web|url=http://www.unscear.org/unscear/en/chernobyl.html |title=UNSCEAR assessment of the Chernobyl accident |publisher=United Nations Scientific Committee of the Effects of Atomic Radiation|accessdate=31 July 2010}}</ref> UNSCEAR was set up as a collaboration between various United Nation bodies, including the [[World Health Organisation]], after the atomic bomb attacks on Hiroshima and Nagasaki, to assess the long-term effects of radiation on human health.<ref>{{cite web|url=http://www.unscear.org/unscear/about_us/history.html|title=Historical milestones|publisher=United Nations Scientific Committee of the Effects of Atomic Radiation|accessdate=14 April 2012}}</ref>


===Deaths due to radiation exposure===
Au cours des années 2000, le réacteur détruit sous le sarcophage reste une menace permanente. Ce sarcophage se détériore de jour en jour et n'est plus étanche. Il laisse filtrer les eaux de pluie qui risquent par écoulement et infiltration naturelle de contaminer la nappe phréatique qui se situe à l’aplomb.
The number potential deaths arising from the Chernobyl disaster is heavily debated. The [[WHO]]'s prediction of 4,000 future cancer deaths in surrounding countries<ref>World Health Organisation [http://www.who.int/mediacentre/news/releases/2006/pr20/en/index.html "World Health Organization report explains the health impacts of the world's worst-ever civil nuclear accident"], ''WHO'', 26 April 2006. Retrieved 4 April 2011.</ref> is based on the [[Linear no-threshold model]] (LNT), which assumes that the damage inflicted by radiation at low doses is directly proportional to the [[effective dose (radiation)|dose]].<ref>{{cite journal|title=Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007|author=Amy Berrington de González, Mahadevappa Mahesh, Kwang-Pyo Kim, Mythreyi Bhargavan, Rebecca Lewis, Fred Mettler, and Charles Land|journal=Arch Intern Med|year= 2009|number=169|volume=22|pages=2071–2077|url=http://archinte.ama-assn.org/cgi/content/full/169/22/2071}}</ref> [[Radiation epidemiologist]] Roy Shore contends that estimating health effects in a population from the LNT model "is not wise because of the uncertainties".<ref name = "Science 2011">{{cite doi|10.1126/science.332.6032.908}}</ref>
[[File:VOA Markosian - Chernobyl02.jpg|thumb|right|Radiation warning sign in Pripyat]]
According to the Union of Concerned Scientists the number of excess cancer deaths worldwide (including all contaminated areas) is approximately 27,000 based on the same LNT.<ref name="Union of Concerned Scientists">{{cite web|url=http://allthingsnuclear.org/post/4704112149/how-many-cancers-did-chernobyl-really-cause-updated |title=How Many Cancers Did Chernobyl Really Cause? |publisher=UCSUSA.org |date=17 April 2011}}</ref>


Another study critical of the Chernobyl Forum report was commissioned by Greenpeace, which asserts that "the most recently published figures indicate that in Belarus, Russia and Ukraine alone the accident could have resulted in an estimated 200,000 additional deaths in the period between 1990 and 2004."<ref name="TheChernobyl2006">{{cite web|url=http://www.greenpeace.org/international/Global/international/planet-2/report/2006/4/chernobylhealthreport.pdf|title=The Chernobyl Catastrophe – Consequences on Human Health |accessdate=15 December 2008|publisher=Greenpeace|date=18 April 2006}}</ref> The Scientific Secretary of the Chernobyl Forum criticized the report's exclusive reliance on non-[[peer review]]ed locally produced studies (in fact, most of the study's sources are from peer-reviewed journals, including many Western medical journals, or from proceedings of scientific conferences<ref name="TheChernobyl2006"/>), while Gregory Härtl (spokesman for the WHO) suggested that the conclusions were motivated by ideology.<ref>{{cite web|last=Hawley|first=Charles|title=Greenpeace vs. the United Nations|url=http://www.spiegel.de/international/0,1518,411864,00.html|work=The Chernobyl Body Count Controversy|publisher=SPIEGEL|accessdate=15 March 2011}}</ref>
=== Sanitaires ===


The German affiliate of the [[IPPNW|International Physicians for the Prevention of Nuclear War (IPPNW)]] argued that more than 10,000 people are today affected by thyroid cancer and 50,000 cases are expected in the future.<ref>{{cite web|title=20 years after Chernobyl&nbsp;– The ongoing health effects|work=[[IPPNW]]|date=April 2006|accessdate=24 April 2006|url=http://www.ippnw-students.org/chernobyl/research.html}}</ref>
[[Image:Tchernobyl radiation 1996.svg|right|thumb|250px|Carte indiquant l'état de la contamination au [[césium 137]] en [[1996]] sur la [[Biélorussie]], la [[Russie]] et l'[[Ukraine]]:
<ul>
<li>{{légende|#ff0000|Zone fermée/confisquée (Supérieure à 40 curies par kilomètre
carré (ci/km²) de césium 137)}}</li>
<li>{{légende|#ff6666|Zone de contrôle permanent (15 à 40 ci/km² de césium 137) }}</li>
<li>{{légende|#ff9999|Zone de contrôle périodique (5 à 15 ci/km² de césium 137) }}</li>
<li>{{légende|#ffcc66|Zone faiblement contaminée (1 à 15 ci/km² de césium 137) }}</li></ul>]]


''Chernobyl: Consequences of the Catastrophe for People and the Environment'' is an English translation of the 2007 Russian publication ''Chernobyl''. It was published in 2009 by the [[New York Academy of Sciences]] in their ''Annals of the New York Academy of Sciences''. It presents an analysis of scientific literature and concludes that medical records between 1986, the year of the accident, and 2004 reflect 985,000 premature deaths as a result of the radioactivity released.<ref name="autogenerated1">{{cite web|title=Details|url=http://www.nyas.org/publications/annals/Detail.aspx?cid=f3f3bd16-51ba-4d7b-a086-753f44b3bfc1|work=Annals of the New York Academy of Sciences|publisher=Annals of the New York Academy of Sciences|accessdate=15 March 2011}}</ref>
{{Article détaillé|Conséquences sanitaires de la catastrophe de Tchernobyl|Faibles doses d'irradiation}}
L'[[IRSN]] (2007, {{p.|29}})<ref name="accidents IRSN" /> rapporte que <code>«</code>deux radionucléides ont soulevé des problèmes sanitaires, tant à cause de leurs effets que des quantités rejetées : le césium 137 avec {{unité|85|PBq}} (2,3 10{{exp|6}} Ci) rejetés et l’[[iode 131]] avec {{unité|1760|PBq}} (47,5 10{{exp|6}} Ci) rejetés.<code>»</code> L'effet sanitaire des radiations a été l'objet d'une polémique durable, les estimations du nombre de victimes allant d'une cinquantaine jusqu'à {{formatnum:985000}} ou plus.


The authors suggest that most of the deaths were in Russia, Belarus and Ukraine, though others occurred worldwide throughout the many countries that were struck by radioactive fallout from Chernobyl. The literature analysis draws on over 1,000 published titles and over 5,000 internet and printed publications discussing the consequences of the Chernobyl disaster. The authors contend that those publications and papers were written by leading Eastern European authorities and have largely been downplayed or ignored by the IAEA and UNSCEAR.<ref name="autogenerated1"/> This estimate has however been criticized as exaggerated, lacking a proper scientific base.<ref name = balonov>{{cite web | url = http://www.nyas.org/publications/annals/Detail.aspx?cid=f3f3bd16-51ba-4d7b-a086-753f44b3bfc1 | title = Review of Volume 1181 | author = M. I. Balonov | publisher = New York Academy of Sciences | date = 28 April 2010 | accessdate =15 September 2011}} [http://www.nyas.org/asset.axd?id=8b4c4bfc-3b35-434f-8a5c-ee5579d11dbb&t=634507382459270000 Full text PDF]</ref>
Les plus fortes doses de radiation ont été reçues par le millier de personnes qui sont intervenues sur le site les premiers jours, et ont été exposées à des doses allant de 2 à 20 [[Gray (unité)|gray]]. Selon l'[[IAEA]] et l'[[IRSN]] 134 présentèrent un [[syndrome d'irradiation aiguë]] et 28 décédèrent<ref name="IAEA" />{{,}}<ref name="accidents IRSN" />. L'[[effet stochastique]] de la [[contamination radioactive]] sur les populations exposées n'apparaît que statistiquement, et est plus difficile à mettre en évidence, d'où son caractère très polémique. La distribution dans les premières heures (6-30) de l'accident de tablettes d'iode à la population de [[Pripiat]] (la plus grande ville à proximité de la centrale, dont la population a été évacuée moins de 48 heures après l'accident) a permis en moyenne de diminuer la dose sur la thyroïde d'un facteur six<ref name="IAEA" />. Selon d'autres experts, allant de l'[[UNSCEAR]] à la [[Commission Européenne]] en passant par le [[André Aurengo|professeur Aurengo]], la distribution de d'iode a été trop partielle et/ou tardive<ref>{{Ouvrage | langue = en | auteurs = United Nations Scientific Committee on the Effects of Atomic Radiation | titre = 2000 United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, Volume II, Annex J, Exposures and effects of the Chernobyl accident | éditeur = Organisation des Nations Unies | année = 2000 | présentation en ligne = http://www.unscear.org/unscear/en/chernobyl.html | lire en ligne = http://www.unscear.org/docs/reports/2000/Volume%20II_Effects/AnnexJ_pages%20451-566.pdf | consulté le = 25 décembre 2011}}</ref>{{,}}<ref name=RadiationProtection170 >{{Ouvrage | langue = en | auteurs = Working Party on Research Implications on Health and Safety Standards of the Article 31 Group of Experts: A. Friedl, R. Huiskamp, L. Lebaron-Jacobs, P. Olko, S. Risica, P. Smeesters (chairman), R. Wakeford, S. Mundigl (scientific secretary) | titre = Recent scientific findings and publications on the health effects of Chernobyl | collection = Radiation Protection | numéro dans collection = 170 | éditeur = European Commission | année = 2011 | présentation en ligne = http://ec.europa.eu/energy/nuclear/radiation_protection/publications_en.htm | lire en ligne = http://ec.europa.eu/energy/nuclear/radiation_protection/doc/publication/170.pdf | consulté le = 25 décembre 2011}}</ref>{{,}}<ref>{{article | prénom = André | nom = Aurengo | titre = Tchernobyl : quelles conséquences sanitaires ? | périodique = La Jaune et la Rouge | numéro = 569 | mois = novembre | année = 2001 | url texte = http://www.industrie.gouv.fr/debat_energie/contribution/pdf/aurengo.pdf | consulté le = 25 décembre 2011 }}</ref>. Au final, une très nette épidémie de {{formatnum:4000}} [[cancer de la thyroïde|cancers de la thyroïde]] (au lieu des 50 statistiquement attendus) a été constatée chez les jeunes enfants de la région, directement attribuable à une contamination à l'Iode-131, et conduisant à quinze décès (donnée 2002). Cela correspond à une multiplication du taux naturel de ce cancer, très rare chez l’enfant, par un facteur entre 10 et 100<ref name="accidents IRSN" />. Cet excès de cancers de la thyroïde chez les enfants auraient été évités si toute la population avait bénéficié en temps voulu d’une distribution prophylactique d’iode stable<ref name="accidents IRSN" />.


==Other conditions==
Selon l'IAEA<ref name="IAEA" /> les quelque {{formatnum:600000}} « [[liquidateurs]] » qui étaient intervenus sur le site reçurent en moyenne une dose de l'ordre de {{unité|100|[[Sievert|mSv]]}} (de 10 à {{unité|500|mSv}}) ; et le taux de mortalité de ce groupe semble avoir augmenté de quelque 5 %, conduisant à une estimation de quatre mille morts supplémentaires. Cependant, si la mortalité a été anormalement élevée, le risque de cancer à proprement parler semble avoir diminué dans ce groupe selon une étude pratiquée sur {{formatnum:8600}} de ces liquidateurs ayant reçu une moyenne de {{unité|50|[[Sievert|mSv]]}}, qui montre une sous-incidence significative de 12 % de l’ensemble des cancers par rapport la population générale russe, et n’a pas permis de mettre en évidence de relation dose-effet significative<ref name=Aurengo2004>{{pdf}} [http://www.academie-sciences.fr/activite/rapport/rapport070405.pdf La relation dose-effet et l’estimation des effets cancérogènes des faibles doses de rayonnements ionisants]. [[Maurice Tubiana]] et [[André Aurengo]], Rapport à l'Académie nationale de médecine, octobre 2004. {{p.|26}}.</ref>. L’analyse chez ces liquidateurs a montré une augmentation (doublement voire triplement) de l’incidence des leucémies mais sans relation dose effet significative, ce qui pouvait indiquer que cette augmentation apparente n'est qu'un biais de dépistage<ref name=Aurengo2004/>{{,}}<ref>{{article | langue = en | auteurs = M. Hatch, E. Ron, A. Bouville, L. Zablotska, G. Howe | titre = The Chernobyl Disaster: Cancer following the Accident at the Chernobyl Nuclear Power Plant | périodique = Epidemiologic Reviews | volume = 27 | numéro = 1 | pages=56-66 | année = 2005 | résumé = http://epirev.oxfordjournals.org/content/27/1/56.full | url texte = http://epirev.oxfordjournals.org/content/27/1/56.full.pdf | doi = 10.1093/epirev/mxi012 | consulté le = 25 décembre 2011 }}</ref>{{,}}<ref>{{ouvrage | lang=en | auteurs=Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council | année=2006 | titre=Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII – Phase 2 | lieu=Washington, DC | éditeur=National Academy Press | lire en ligne=http://www.nap.edu/openbook.php?record_id=11340&page=R1 | présentation en ligne=http://www.nap.edu/catalog.php?record_id=11340 | isbn=0-309-53040-7 | consulté le=25 décembre 2011 }}, page 203</ref>. L'IRSN (''op.cit.'', {{p.|30}}) indique que « indépendamment des incertitudes sur les doses reçues par les « liquidateurs », souvent surévaluées en raison des avantages sociaux et des compensations liées au statut de « liquidateur », les données issues du suivi de ces travailleurs sont d’interprétation difficile, notamment à cause de l’éclatement de l’URSS, qui a rendu nombre de « liquidateurs » à leurs pays d’origine<ref name="accidents IRSN" /> ». En reconstruisant les doses des sujets plutôt que d'utiliser les chiffres officiels donnés par les registres, une étude récente a cependant observé une augmentation significative du nombre de leucémies chez des liquidateurs ukrainiens, ce résultat étant conforté par l'existence d'une relation dose-effet linéaire<ref>{{article | langue = en | auteurs = A.Ye. Romanenko, S. Finch, M. Hatch, J. Lubin, V.G. Bebeshko, D.A. Bazyka, N. Gudzenko, I.S. Dyagil, R. Reiss, A. Bouville, V.V. Chumak, N.K. Trotsiuk, N.G. Babkina, Y. Belayev, I. Masnyk, E. Ron, G.R. Howe, L.B. Zablotska | titre = The Ukrainian-American Study Of Leukemia And Related Disorders Among Cleanup Workers From Ukraine: III. Radiation Rrisks | périodique = Radiation Research | volume = 170 | numéro = 6 | pages=711-720 | année = 2008 | résumé = http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856603/?tool=pubmed | url texte = http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856603/pdf/nihms188261.pdf | doi = 10.1667/RR1404.1 | consulté le = 25 décembre 2011 }}</ref>{{,}}<ref name=RadiationProtection170/>.
According to [[Kenneth Mossman]], a Professor of [[Health Physics]] and member of the [[U.S. Nuclear Regulatory Commission]] advisory committee,<ref name="Mossman">{{cite web|url=http://sols.asu.edu/people/faculty/kmossman.php|title=ASU school of life scientist:Kenneth Mossman}}</ref> the "LNT philosophy is overly conservative, and low-level radiation may be less dangerous than commonly believed".<ref>{{cite doi|10.1118/1.598208}}</ref> Yoshihisa Matsumoto, a radiation biologist at the Tokyo Institute of Technology, cites laboratory experiments on animals to suggest there must be a threshold dose below which DNA repair mechanisms can completely repair any radiation damage.<ref name = "Science 2011"/> Mossman suggests that the proponents of the current model believe that being conservative is justified due to the uncertainties surrounding low level doses and it is better to have a "prudent public health policy".<ref name="Mossman"/>


Another significant issue is establishing consistent data on which to base the analysis of the impact of the Chernobyl accident. Since 1991 large social and political changes have occurred within the affected regions and these changes have had significant impact on the administration of health care, on socio-economic stability, and the manner in which statistical data is collected.<ref>{{cite doi|10.1093/ije/28.1.19}}</ref> Ronald Chesser, a radiation biologist at [[Texas Tech University]], says that "the subsequent Soviet collapse, scarce funding, imprecise dosimetry, and difficulties tracking people over the years have limited the number of studies and their reliability."<ref name = "Science 2011"/>
Selon l'IAEA il n'a pas été constaté d'effet statistiquement observable sur le taux de leucémie ou de cancer (autre que de la thyroïde) des populations les plus exposées : {{nombre|116000|personnes}} évacuées des zones hautement contaminées (exposition moyenne estimée à {{unité|33|[[Sievert|mSv]]}}, avec des expositions maximales de l'ordre de quelques centaines de [[Sievert|mSv]]), {{nombre|270000|personnes}} habitant les zones strictement contrôlées (exposition cumulée de l'ordre de {{unité|50|[[Sievert|mSv]]}} entre 1986 et 2005), et les 5 millions d'habitants des zones faiblement contaminées (de 10 à {{unité|20|[[Sievert|mSv]]}})<ref name="IAEA" />. Ces zones contaminées (à plus de {{unité|37|kBq/m|2}} en Cs-137, soit un curie/km{{2}}) représentent un total de {{unité|200000|km|2}}.
Une contamination de 15 Ci par km2 occasionne une dose externe d’environ {{unité|4|mSv/an}}, auxquels il faut ajouter la part de contamination interne provenant des produits utilisés dans la chaîne alimentaire, doublant en moyenne cette valeur<ref>[http://sfp.in2p3.fr/Debat/debat_energie/websfp/masse.htm Effets des radiations], R. Masse.</ref>.


== Economic and political consequences ==
[[Image:ChernobylMIR.jpg|thumb|250px|left|Photo satellite de la région de Tchernobyl en 1997.]]
It is difficult to establish the total economic cost of the disaster. According to [[Mikhail Gorbachev]], the Soviet Union spent 18 billion rubles (the equivalent of US$18 billion at that time) on containment and decontamination, virtually bankrupting itself.<ref name="GorbachevBoC"/> In Belarus the total cost over 30 years is estimated at US$235&nbsp;billion (in 2005 dollars).<ref name="Chernobyl's Legacy"/> On-going costs are well known; in their 2003–2005 report, [[The Chernobyl Forum]] stated that between 5% and 7% of government spending in Ukraine still related to Chernobyl, while in Belarus over $13&nbsp;billion is thought to have been spent between 1991 and 2003, with 22% of national budget having been Chernobyl-related in 1991, falling to 6% by 2002.<ref name="Chernobyl's Legacy"/> Much of the current cost relates to the payment of Chernobyl-related social benefits to some 7&nbsp;million people across the 3 countries.<ref name="Chernobyl's Legacy"/>
En dehors de ces zones, dans le reste de l'Europe, le passage des « nuages radioactifs » a conduit à une hausse détectable de la radioactivité, mais la population a été exposée à moins de {{unité|10|[[Sievert|mSv]]}} (c'est-à-dire deux ou trois fois la dose moyenne reçue par la radioactivité naturelle). En France, la radioactivité maximale enregistrée a été de l'ordre de {{unité|6|kBq/m|2}}, cinq à six fois plus faible que la limite des « zones faiblement contaminées » (zones où les populations n'ont pas été évacuées). « L'explosion est restée très concentrée près de l'installation, et les retombées ont été dispersées par de grandes "plumes", qui sont montées très haut dans l'atmosphère et ont traversé l'Europe, diluant leur concentration… ça aurait pu être bien pire »<ref>D'après un expert de l'AIEA, cité par [http://www.msnbc.msn.com/id/12315750/ Chernobyl still casts cloud over health - World news - World environment - msnbc.com].</ref>.


A significant economic impact at the time was the removal of {{convert|784320|ha|acre|abbr=on}} of agricultural land and {{convert|694200|ha|acre|abbr=on}} of forest from production. While much of this has been returned to use, agricultural production costs have risen due to the need for special cultivation techniques, fertilizers and additives.<ref name="Chernobyl's Legacy"/>
Si l'on suppose que le taux de cancers varie en fonction de l'exposition suivant une loi « linéaire sans seuil », hypothèse sujette à caution<ref>Voir Roland Masse, {{pdf}} [http://eer2004.in2p3.fr/Saison1/resume/Masse-Fr_jus.pdf ''Effets des faibles doses'']</ref>, alors chaque Sievert statistiquement constaté au-dessus de {{unité|100|[[Sievert|mSv]]}} prolonge le taux de 5 % de cancers. Le nombre total de cancers supplémentaires induits dans ces zones contaminées serait à long terme de l'ordre de {{formatnum:5000}}, soit un pour mille de la population exposée (et une extrapolation sur le reste de l'Europe conduirait à {{nombre|50000|victimes}} supplémentaires). Mais de tels chiffres ne peuvent être validés scientifiquement, et sont donc très polémiques : une sur-mortalité de ce niveau n'est pas détectable par des moyens statistiques<ref> Pour une population de 5 millions d'habitants, le taux de mortalité naturel est de l'ordre de {{nombre|50000|morts}} par an, dont {{formatnum:15000}} à {{formatnum:20000}} par cancer ; ces valeurs correspondent statistiquement à un [[écart-type]] de l'ordre de 150 à 250 décès. Si l'hypothèse "linéaire sans seuil" est valide, et du fait que les {{nombre|5000|morts}} qu'elle prédit s'étalent sur ~ 25 ans, et n'apparaissent qu'après de nombreuses années, l'ordre de grandeur du signal à identifier est de l'ordre de {{nombre|200|décès}}, c'est-à-dire du même ordre que les fluctuations statistiques de la mortalité. Il n'est donc pas possible de prouver statistiquement qu'une petite variation de la mortalité une année donnée peut être attribuée à des rayonnements, parce qu'elle peut aussi bien être due au simple hasard : les variations possibles sont du même ordre de grandeur.</ref>.


Politically, the accident gave great significance to the new Soviet policy of glasnost,<ref name="ShlyGlasnost">Shlyakhter, Alexander & Wilson, Richard (1992), “Chernobyl and Glasnost: The Effects of Secrecy on Health and Safety”, in ''Environment'', Vol. 34 no. 5, Abingdon, Oxfordshire: Taylor & Francis Ltd.</ref><ref name="PetrynaSarc">Petryna, Adriana (1995), “Sarcophagus: Chernobyl in Historical Light”, in ''Cultural Anthropology'', Vol. 10, no. 2, Blackwell Publishing.</ref>{{rp|196–7}} and helped forge closer Soviet-US relations at the end of the Cold War, through bioscientific cooperation.<ref name="PetrynaLE">{{cite book |last=Petryna |first=Adriana |year=2002 |title=Life Exposed: Biological Citizens after Chernobyl |location=Princeton, NJ |publisher=Princeton University Press}}</ref>{{rp|44–48}} But the disaster also became a key factor in the Union's eventual [[Dissolution of the Soviet Union|1991 dissolution]], and a major influence in shaping the new [[Eastern Europe]].<ref name="PetrynaLE"/>{{rp|20–21}}
IRSN (2007, {{p.|31-32}})<ref name="accidents IRSN" /> précise que
{{Début citation}}Les conséquences radiologiques de l’accident de Tchernobyl sur la santé des populations doivent être dissociées des effets qui ont été causés ou amplifiés par les changements radicaux […] qui ont eu lieu en [[Union des républiques socialistes soviétiques|Union Soviétique]] au même moment. La période post-accidentelle a coïncidé avec la période de restructuration de la [[perestroïka|''Perestroïka'']], qui a entraîné une chute brutale de tous les indices économiques, comparable à celle constatée dans des pays en guerre. […] L’effondrement économique a eu un impact significatif sur les taux de mortalité et de morbidité. En Russie, le taux brut de mortalité est passé de 488 pour {{formatnum:100000}} en 1990 à 741 pour {{formatnum:100000}} en 1993, soit une augmentation de 52 % ; en 1993 l’espérance de vie des hommes est tombée à cinquante-neuf ans, soit six ans de moins qu’en 1987. […] Si l’on néglige cette augmentation globale de la morbidité et de la mortalité, l’examen isolé des statistiques sur les populations exposées du fait de l’accident peut aboutir à la fausse conclusion que ces effets sont en rapport direct avec l’accident.{{Fin citation|IRSN (2007)<ref name="accidents IRSN" />}}


== Aftermath ==
Des [[incendies de forêts]] et de [[tourbière]]s tels que [[Incendies de forêt en Russie de 2010|ceux qui]] ont accompagné la [[canicule de 2010]] en Russie sont susceptibles de brutalement réinjecter dans l'atmosphère et les eaux superficielles et souterraines des radionucléides ou du plomb qui étaient piégés dans la [[biomasse (écologie)|biomasse]] et la [[nécromasse]] fongique, lichénique, animale et végétale.
Following the accident, questions arose about the future of the plant and its eventual fate. All work on the unfinished reactors 5 and 6 was halted three years later. However, the trouble at the Chernobyl plant did not end with the disaster in [[nuclear reactor|reactor]] 4. The damaged reactor was sealed off and {{convert|200|m3|yd3|-1|sp=us}} of concrete was placed between the disaster site and the operational buildings.{{Citation needed|date=March 2011}} The Ukrainian government continued to let the three remaining reactors operate because of an energy shortage in the country.


=== Decommissioning ===
Il faut rajouter au nombre des victimes cent à deux cent mille avortements volontaires entraînés par la peur que les femmes enceintes ont eue des radiations<ref>[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375486/ The LNT Debate in Radiation Protection: Science vs. Policy], Kenneth L. Mossman, Dose-Response, Volume 10, Number 2 / 2012 </ref>. De nombreux obstétriciens ont jugé plus prudent de mettre un terme à une grossesse, ou ont été incapable de résister à la demande de la future mère, malgré le fait que ces avortements n'étaient pas médicalement justifiés, les doses de radiation étant bien en-dessous de ce qu'il est nécessaire pour produire un quelconque effet ''in utero''<ref>Trichopoulos D, Zavitsanos X, Koutis C, Drogari P, Proukakis C and Petridou E. 1987. [http://www.bmj.com/highwire/filestream/325383/field_highwire_article_pdf/0/1100.full.pdf The victims of Chernobyl in Greece]: Induced abortions after the accident. British Medical Journal 295:1100</ref>.
{{Main|Chernobyl Nuclear Power Plant#Decommissioning}}
In 1991, a fire broke out in the turbine building of reactor 2;<ref>{{cite web|url=http://www.nrc.gov/reading-rm/doc-collections/gen-comm/info-notices/1993/in93071.html |title=Information Notice No. 93-71 |publisher=Nrc.gov |accessdate=20 August 2011}}</ref> the authorities subsequently declared the reactor damaged beyond repair and had it taken offline. Reactor 1 was decommissioned in November 1996 as part of a deal between the Ukrainian government and international organizations such as the IAEA to end operations at the plant. On 15 December 2000, then-President [[Leonid Kuchma]] personally turned off Reactor 3 in an official ceremony, shutting down the entire site.<ref>[http://www.iaea.org/programmes/a2/ IAEA's Power Reactor Information System] polled in May 2008 reports shut down for units 1, 2, 3 and 4 respectively at 30 November 1996, 11 October 1991, 15 December 2000 and 26 April 1986.</ref>


=== Techniques ===
=== Radioactive waste management ===
[[Image:Cherbnobyl-powerplant-today.jpg|thumb|250px|right|Le sarcophage qui entoure le réacteur]]


==== Containment of the reactor ====
Après l'accident de Tchernobyl, un projet de construction d'une centrale nucléaire en [[Crimée]] fut abandonné<ref>[http://www.euractiv.com/fr/europe-est/valery-pyatnitsky-des-le-ons-doivent-tre-tir-es-de-tchernobyl-mais-le-nucl-aire-ne-doit-p Valery Pyatnitsky : des leçons doivent être tirées de Tchernobyl, mais le nucléaire ne doit pas être abandonné]</ref>.
The Chernobyl reactor is now enclosed in a large concrete sarcophagus, which was built quickly to allow continuing operation of the other reactors at the plant.<ref>{{cite web|author=Чернобыль, Припять, Чернобыльская АЭС и зона отчуждения |url=http://www.chornobyl.in.ua/en/shelter.htm |title="Shelter" object description |publisher=Chornobyl.in.ua |date= |accessdate=8 May 2012}}</ref>


A [[New Safe Confinement]] was to have been built by the end of 2005; however, it has suffered ongoing delays and {{as of|2010|lc=y}}, when construction finally began, is expected to be completed in 2013. The structure is being built adjacent to the existing shelter and will be slid into place on rails. It is to be a metal arch {{convert|105|m}} high and spanning {{convert|257|m}}, to cover both unit 4 and the hastily built 1986 structure. The [[Chernobyl Shelter Fund]], set up in 1997, has received [[Euro|€]]810 million from international donors and projects to cover this project and previous work. It and the Nuclear Safety Account, also applied to Chernobyl decommissioning, are managed by the [[European Bank for Reconstruction and Development]] (EBRD).{{Citation needed|date=August 2008}}
La catastrophe a accéléré la recherche sur les réacteurs RBMK et leur modernisation. Elle a également mis en évidence la nécessité d'une enceinte de confinement autour des installations, dont l'efficacité a été pleinement démontrée lors de l'accident de la [[centrale nucléaire de Three Mile Island]]. En [[2000]], les autres tranches de la centrale ont été arrêtées définitivement, sous la pression de l'[[Union européenne]] et en échange d'aides financières<ref>[http://www.cea.fr/energie/accident_de_tchernobyl_reperes/reperes Accident de Tchernobyl : quelques repères sur le sujet] sur cea.fr</ref>.


By 2002, roughly 15,000 Ukrainian workers were still working within the Zone of Exclusion, maintaining the plant and performing other containment- and research-related tasks, often in dangerous conditions.<ref name="PetrynaLE"/>{{rp|2}}
=== Maintenance et nouveau confinement ===
A handful of Ukrainian scientists work inside the sarcophagus, but outsiders are rarely granted access. In 2006 an [[60 Minutes (Australian TV program)|Australian ''60 Minutes'']] team led by reporter Richard Carleton and producer Stephen Rice were allowed to enter the sarcophagus for 15 minutes and film inside the control room.<ref>{{cite web|url=http://video.au.msn.com/watch/video/return-to-chernobyl/xf09iii|title=Inside Chernobyl|publisher=60 Minutes Australia, Nine Network Australia|date=16 April 2006}}</ref>


==== Radioactive materials and waste management ====
Depuis des années, l'[[eau]] et la neige s'infiltrent dans le « [[Arche de Tchernobyl|sarcophage]] » : le béton a souffert de la [[radioactivité]], et la structure a été bâtie sur des fondations préexistantes ou sur des structures instables dont l'état n'est plus connu avec précision et est aujourd'hui invérifiable car non accessible à cause de la radioactivité et des débris. En [[1997]], la [[communauté internationale]] jugeait qu'une intervention sur le site de Tchernobyl était nécessaire. Il s'agissait de stabiliser le sarcophage actuel, préparer le site à la construction d'un nouveau sarcophage pour finalement le construire.


{{As of|2006}}, some fuel remained in the reactors at units 1 through 3, most of it in each unit's [[cooling pond]], as well as some material in a small spent fuel interim storage facility pond (ISF-1).
En [[1999]], une première série de travaux de consolidation du toit a été réalisée par les Ukrainiens, en attendant la décision de la réalisation d'un autre sarcophage. Au début des études (SIP - Shelter Implementation Plan) en 1998<ref>{{pdf}} [http://www.iaea.org/NewsCenter/Features/Chernobyl-15/shelter-fund.pdf Chernobyl Shelter Fund], février 2000.</ref>, la priorité a été donnée au renforcement du toit qui menaçait de tomber et risquait ainsi de recontaminer le site.


In 1999 a contract was signed for construction of a [[radioactive waste]] management facility to store 25,000 used fuel assemblies from units 1–3 and other operational wastes, as well as material from decommissioning units 1–3 (which will be the first RBMK units decommissioned anywhere). The contract included a processing facility able to cut the RBMK fuel assemblies and to put the material in canisters, which were to be filled with [[inert gas]] and [[welded]] shut.
Entre [[2003]] et [[2006]], des travaux de construction d'un bâtiment de vestiaire, d'un hôpital, d'un centre d'entraînement, d'une base de construction, des réseaux d'alimentation en eau et énergie(s) ainsi que d'un bâtiment administratif ont été réalisés.
En 2006, suite à un appel d'offres, une entreprise russe a procédé à la stabilisation des parties instables du sarcophage existant.
En [[2001]] le concept « [[arche de Tchernobyl]] » fut choisi. Entre [[2002]] et [[2003]], un avant-projet a été réalisé. Un appel d'offres international a été lancé le 11 mars [[2004]] pour la conception, la construction et la mise en service du nouveau confinement. Le consortium [[Novarka]] mené par les groupes français [[Vinci]] et [[Bouygues]] est en charge des travaux. Les travaux de terrassement ont débuté en [[2006]] et la construction de l'arche devrait commencer en avril [[2012]]. Ce gigantesque chantier (l'un des plus importants chantiers industriels de l'histoire) devrait se terminer à l'automne [[2015]]. L'arche mesurera {{Unité|108|mètres}} de haut, {{Unité|162|m}} de large, {{Unité|270|m}} de long pour un poids avoisinant les {{Unité|30000|t}}<ref name="cn_lmde">[http://www.lemonde.fr/economie/article/2012/04/25/top-depart-pour-le-sarcophage-geant-au-dessus-de-tchernobyl_1690955_3234.html Top départ pour le sarcophage géant], un article du [[le Monde|monde.fr]]</ref>.


The canisters were to be transported to [[dry cask storage|dry storage vaults]], where the fuel containers would be enclosed for up to 100 years. This facility, treating 2500 fuel assemblies per year, would be the first of its kind for RBMK fuel. However, after a significant part of the storage structures had been built, technical deficiencies in the concept emerged, and the contract was terminated in 2007. The interim spent fuel storage facility (ISF-2) will now be completed by others by mid-2013.{{Citation needed|date=August 2008}}
La désormais emblématique tour de refroidissement (qui se trouve être aussi le logo de Novarka) devra être démontée lors des travaux car sa base se trouvera sous le nouveau sarcophage. De plus, cette dernière qui n'est plus entretenue depuis la catastrophe, menace de s'écrouler sur le toit du sarcophage et de le faire s'effondrer. En février 2013, le toit d'un bâtiment proche du sarcophage s'est effondré sous le poids de la neige.<ref>[http://www.world-nuclear-news.org/RS_No_impact_from_Chernobyl_roof_collapse_1302131.html No impact from Chernobyl roof collapse], WNN, 13 février 2013.</ref>


Another contract has been let for a liquid radioactive waste treatment plant, to handle some 35,000 cubic meters of low- and intermediate-level liquid wastes at the site. This will need to be solidified and eventually buried along with solid wastes on site.{{Citation needed|date=August 2008}}
Le coût total de ce projet est estimé à 1,540 milliard d'euros payés en majeure partie par les pays du [[Groupe des sept (économie)|G7]] et l'Ukraine. Son financement est géré par la [[Banque européenne pour la reconstruction et le développement]] (BERD). L'arche abritera des ateliers destinés à décontaminer, traiter et conditionner les matériaux [[Radioactivité|radioactifs]] en vue d'un futur stockage<ref>« Un deuxième sarcophage pour oublier Tchernobyl », dans ''Sciences et Avenir'' {{numéro}}710 ({{date||avril|2006}})</ref>.


In January 2008, the Ukrainian government announced a 4-stage decommissioning plan that incorporates the above waste activities and progresses towards a cleared site
=== Financières ===
.<ref name="WNA-Chernobyl"/>
Destiné à durer 30 ans, le sarcophage de mélange de béton et de plomb construit à la hâte par les soviétiques a coûté 18 milliards de dollars. Avec l'aide d'un financement européen, il a été entrepris de le remplacer par une structure métallique prévue pour tenir un siècle. En 2011, plus de 1,5 milliards de dollars sont encore nécessaires pour la construction du nouveau sarcophage<ref>[http://www.lesoir.be/actualite/monde/2011-03-31/600-millions-manquent-pour-le-nouveau-sarcophage-de-tchernobyl-831639.php 600 millions manquent pour le nouveau sarcophage de Tchernobyl]</ref>.<br />
Sur 30 ans, plusieurs rapports cités par l'[[IAEA]] estiment le coût de la catastrophe de Tchernobyl à plusieurs centaines de milliards de dollars<ref>{{en}} [http://www.iaea.org/Publications/Booklets/Chernobyl/chernobyl.pdf Page 33] {{citation|Belarus, for instance, has estimated the losses over 30 years at US $235 billion.}}</ref>.
Pour sa part, le directeur de [[Greenpeace]] France, Pascal Husting, chiffre le coût total de Tchernobyl à {{formatnum:1000}} milliards<ref>[http://www.dailymotion.com/video/xhtx6j_greenpeace-vs-zemmour-naulleau-2-itw-onpc-260311-ruquier_news#from=embed Citation de Pascal Husting, directeur de [[Greenpeace]] France à {{14e}} minute]</ref>.


==== Lava-like fuel-containing materials (FCMs) ====
=== Écologiques ===
{{Main|corium (nuclear reactor)}}
Des divergences subsistent sur l'évaluation à long terme des conséquences sur le milieu naturel : la contamination de longue durée de plantes forestières et de gibier, une forte mortalité d'animaux invertébrés ou mammifères, ainsi qu'un impact sur la durée de vie des conifères ont été évoqués <ref>[http://www.ladocumentationfrancaise.fr/dossiers/heritage-sovietique/tchernobyl.shtml Tchernobyl, 20 ans après, Conséquences sur l’environnement]</ref>. Certains médias évoquent une nouvelle biodiversité consécutive à l'abandon par l'homme des environs de la centrale <ref>[http://www.arte.tv/fr/3183576,CmC=3183232.html Tchernobyl, une histoire naturelle : Quelle explication donner à l’apparente recolonisation par la Nature à Tchernobyl ?]</ref> mais ce point de vue est sujet à débat<ref>http://groupes.sortirdunucleaire.org/Tchernobyl-Fernex Commentaires de Michel Fernex sur le reportage "Tchernobyl, une histoire naturelle"</ref>.
According to official estimates, about 95% of the fuel in the reactor at the time of the accident (about 180 [[metric ton]]s) remains inside the shelter, with a total radioactivity of nearly 18 million [[curie]]s (670 [[becquerel|PBq]]). The radioactive material consists of core fragments, dust, and lava-like "[[fuel containing material]]s" (FCM, also called "corium") that flowed through the wrecked reactor building before hardening into a [[ceramic]] form.


Three different lavas are present in the basement of the reactor building: black, brown, and a [[porous]] ceramic. They are [[silicate glass]]es with [[inclusion (mineral)|inclusion]]s of other materials within them. The porous lava is brown lava that dropped into water and thus cooled rapidly.
== Réception en Europe ==
=== France ===
{{Article détaillé|Conséquences de la catastrophe de Tchernobyl en France}}


==== Degradation of the lava ====
== Gestion après l'accident ==
It is unclear how long the ceramic form will retard the release of radioactivity. From 1997 to 2002 a series of papers were published that suggested that the self-irradiation of the lava would convert all 1,200&nbsp;metric tons into a submicrometer and mobile powder within a few weeks.<ref>V.&nbsp;Baryakhtar, V.&nbsp;Gonchar, A.&nbsp;Zhidkov and V.&nbsp;Zhidkov, Radiation damages and self-spluttering of high radioactive dielectrics: Spontaneous emission of submicrometre dust particles, ''Condensed Matter Physics'', 2002, '''5'''(3{31}), 449–471.</ref> But it has been reported that the degradation of the lava is likely to be a slow and gradual process rather than sudden and rapid.<ref name="Borovoi2006">{{cite journal | last = Borovoi|first=A.&nbsp;A.|year=2006|title=Nuclear fuel in the shelter|journal=Atomic Energy|volume=100|issue=4|pages=249–256|doi=10.1007/s10512-006-0079-3}}</ref> The same paper states that the loss of [[uranium]] from the wrecked reactor is only {{convert|10|kg|lb|abbr=on}} per year. This low rate of uranium [[leaching]]{{disambiguation needed|date=May 2012}} suggests that the lava is resisting its environment. The paper also states that when the shelter is improved, the leaching rate of the lava will decrease.
Alors que, vingt ans après la catastrophe, la vie dans les régions touchées reste marquée par la catastrophe<ref>{{pdf}} [http://www.oecd-nea.org/rp/reports/2006/nea6171-tchernobyl.pdf Société civile et radioprotection : les enseignements de Tchernobyl, 20 ans après]</ref>, le [[Programme des Nations unies pour le développement]] (PNUD) a lancé en [[2003]] un programme spécifique pour le développement des régions touchées par l'accident intitulé : « ''[[Chernobyl Recovery and Development Programme]]'' » (Programme pour le développement et le renouveau de Tchernobyl).


Some of the surfaces of the lava flows have started to show new uranium minerals such as {{chem|Na|4|(UO|2|)(CO|3|)|3}} and [[uranyl carbonate]]. However, the level of radioactivity is such that during one hundred years the self irradiation of the lava {{nowrap|(2 × 10<sup>16</sup>}} α&nbsp;decays per gram and 2 to {{nowrap|5 × 10<sup>5</sup> Gy}} of β or γ) will fall short of the level of self irradiation required to greatly change the properties of [[glass]] (10<sup>18</sup> α decays per gram and 10<sup>8</sup> to 10<sup>9</sup>&nbsp;Gy of β or γ). Also the rate of dissolution of the lava in water is very low (10<sup>−7</sup> g-cm<sup>−2</sup> day<sup>−1</sup>), suggesting that the lava is unlikely to dissolve in water.<ref name="Borovoi2006" />
== Notes et références ==
{{Références|colonnes=2}}


=== The Exclusion Zone ===
== Annexes ==
[[File:Entrance to zone of alienation around Chernobyl.jpg|thumb|Entrance to the [[Chernobyl Exclusion Zone|zone of alienation]] around Chernobyl]]
{{Autres projets
{{Main|Chernobyl Exclusion Zone}}
| commons = Category:Chernobyl disaster
An area extending {{convert|19|mi|km}} in all directions from the plant is known as the "zone of alienation." It is largely uninhabited, except for a few residents who have refused to leave. The area has largely reverted to forest. Even today, radiation levels are so high that the workers responsible for rebuilding the sarcophagus are only allowed to work five hours a day for one month before taking 15 days of rest. Ukrainian officials estimate the area will not be safe for human life again for another 20,000 years.<ref name=TimeDisaster/>
}}


In 2011, Ukraine opened up the sealed zone around the Chernobyl reactor to tourists who wish to learn more about the tragedy that occurred in 1986.<ref>{{cite news|url=http://www.foxnews.com/world/2010/12/13/ukraine-open-chernobyl-area-tourists-1172479551/ |title=News |agency=Associated Press |date=13 December 2010 |publisher=Yahoo News |accessdate=2 March 2012}}</ref><ref>{{cite news|url=http://www.travelsnitch.org/categories/features/tours-of-chernobyl-sealed-zone-officially-begin/ |title=Tours of Chernobyl sealed zone officially begin |agency=TravelSnitch |date=18 March 2011 |publisher=TravelSnitch}}</ref>
=== Bibliographie ===
==== Livres ====
* Anonyme, ''Tchernobyl : anatomie d'un nuage'', Ivrea, [[éditions Gérard Lebovici]], 1987 {{ISBN|2-85184-178-5}}
* Alexievitch Svetlana, ''La Supplication - Tchernobyl, chroniques du monde après l'apocalypse'', Paris, J-C Lattès 1998
* Galia Ackerman, ''Tchernobyl, retour sur un désastre'', Buchet-Chastel, mars 2006 {{ISBN|2-2830-2094-8}}
* Bella et [[Roger Belbéoch (1928-2011)|Roger Belbéoch]], ''Tchernobyl, une catastrophe'', [[Allia (éditeur)|Allia]], 1993
* Association contre le nucléaire et son monde, ''Sous l'épaisseur de la nuit, Documents et témoignages sur le désastre de Tchernobyl'', Paris, 1993
* Gildas Chasseboeuf et Emmanuel Lepage, ''Les fleurs de Tchernobyl'', Association Les Dessin'acteurs, 2008
* Philippe Coumarianos, ''Tchernobyl après l'apocalypse'', Hachette Littératures, 2000
* Jean-Pierre Dupuy, ''Retour de Tchernobyl - journal d'un homme en colère'', Seuil, 2006
* Jean-Pierre Pharabod, Jean-Paul Schapira, ''Les jeux de l'atome et du hasard'', Calmann-Lévy, 1988 {{ISBN|2-7021-1661-2}}
* Bernard Lerouge, avec le concours de Yvon Grall et Pierre Schmitt, ''Tchernobyl, un « nuage » passe… Les faits et les controverses'', L’Harmattan, coll. « Questions contemporaines », 2009
* [[Wladimir Tchertkoff]], ''Le Crime de Tchernobyl, le Goulag nucléaire'', Actes Sud, 2006 {{ISBN|2-7427-6042-3}}
* [[Svetlana Alexievitch]], ''La supplication - Tchernobyl, chroniques du monde après l'apocalypse'', Éditions Jean-Claude Lattès, 1998 pour la traduction française. Titre original : ''Tchernobylskaïa molitva'', publié par les Éditions Ostojié, Moscou, 1997
* [[Igor Kostine]], ''Tchernobyl confessions d'un reporter'', [[Les Arènes]], 2006 {{ISBN|2-9124-8597-5}}
* [[Ferenc Rákóczy]], ''Devant Tchernobyl'', journal poétique d'un voyage, in ''Éoliennes'', L'Âge d'Homme, 2007, [http://www.lagedhomme.com/boutique/fiche_produit.cfm?ref=2-8251-1749-9&type=22&code_lg=lg_fr&num=1&pag=13 Fiche] {{ISBN|978-2-8251-3749-9}}
* [[Jaime Semprun]], ''La Nucléarisation du monde'', [[éditions Gérard Lebovici]], 1986 {{ISBN|2-85184-172-6}}
* [http://juwel.fz-juelich.de:8080/dspace/bitstream/2128/3551/1/Energie%26Umwelt_31.pdf ''The Korma-Report'' by Dederichs, H., Pillath, J., Heuel-Fabianek, B., Hill, P., Lennartz, R. (2009) : ''Langzeitbeobachtung der Dosisbelastung der Bevölkerung in radioaktiv kontaminierten Gebieten Weißrusslands - Korma-Studie''] {{pdf}} (Vol. 31, Series “Energy & Environment“ by Forschungszentrum Jülich) published data of a long-term monitoring programme {{ISBN|978-3-89336-562-3}}
* Grigori Medvedev, ''La Vérité sur Tchernobyl'', Albin Michel, 1990


==== Articles ====
== Recovery projects ==
* [[Nicolas Werth]], « Tchernobyl : enquête sur une catastrophe annoncée », ''[[L'Histoire]]'', {{numéro|308}}, avril 2006
* [[Accidents nucléaires de Fukushima]]


=== Média ===
=== The Chernobyl Shelter Fund ===
{{main|Chernobyl Shelter Fund}}
==== Jeux vidéo ====
The Chernobyl Shelter Fund was established in 1997 at the Denver [[23rd G8 summit]] to finance the [[Shelter Implementation Plan]] (SIP). The plan calls for transforming the site into an ecologically safe condition by means of stabilization of the sarcophagus followed by construction of a New Safe Confinement (NSC). While the original cost estimate for the SIP was US$768&nbsp;million, the 2006 estimate was $1.2&nbsp;billion. The SIP is being managed by a consortium of [[Bechtel]], [[Battelle Memorial Institute|Battelle]], and [[Electricité de France]], and conceptual design for the NSC consists of a movable arch, constructed away from the shelter to avoid high radiation, to be slid over the sarcophagus. The NSC is expected to be completed in 2015,<ref>{{cite web|url=http://www.ebrd.com/pages/news/press/2011/110408e.shtml|title=NOVARKA and Chernobyl Project Management Unit confirm cost and time schedule for Chernobyl New Safe Confinement|date=8 April 2011|accessdate=28 March 2012}}</ref> and will be the largest movable structure ever built.
Plusieurs jeux vidéo évoquent la catastrophe de Tchernobyl :
* Série ''S.T.A.L.K.E.R.'' : jeu vidéo dont l'histoire se déroule dans les années 2010 et a trait à l'accident de Tchernobyl et à l'univers fantastique qu'il a engendré (''[[S.T.A.L.K.E.R.: Shadow of Chernobyl|Shadow of Chernobyl]]'', ''[[S.T.A.L.K.E.R.: Clear Sky|Clear Sky]]'', ''[[S.T.A.L.K.E.R.: Call of Pripyat|Call of Pripyat]]'').
* ''[[Call of Duty 4: Modern Warfare]]'' : jeu se déroulant dans la ville de [[Pripiat]] qui permet aussi de mesurer les dégâts sur les bâtiments abandonnés.
* ''[[Call of Duty: Modern Warfare 2]]'' : une mission des opérations spéciales se déroule aux alentours de la centrale.
* ''Chernobyl: Terrorist Attack'' : jeu sorti uniquement en Russie, il met en scène un militaire qui doit sauver la centrale de Tchernobyl attaquée par des terroristes.


Dimensions:
=== Filmographie ===
* Span: {{convert|270|m|ft|0|abbr=on}}
* [[Thomas Johnson (réalisateur)|Thomas Johnson]], ''[http://www.accident-tchernobyl.com/tchernobyl-le-film.php La bataille de Tchernobyl]'', documentaire français (100 min), Production ''Play Film'', 2005.
* Height: {{convert|100|m|ft|-1|abbr=on}}
* [[Luc Riolon]], ''[http://www.arte.tv/fr/3183576,CmC=3183232.html Tchernobyl, une histoire naturelle ?]'' documentaire français (90 min), Production ''Camera Lucida'', 2010.
* Length: {{convert|150|m|ft|0|abbr=on}}
* [[Wladimir Tchertkoff]], ''[http://enfants-tchernobyl-belarus.org/doku.php?id=filmographie Controverses Nucléaires]'' (51 min).
* [[Wladimir Tchertkoff]], ''[http://enfants-tchernobyl-belarus.org/doku.php?id=filmographie Le Sacrifice]'' (24 min).
* ''[[La Terre outragée]]'', film réalisé par Michale Boganim avec [[Olga Kurylenko]], sorti en [[2012 au cinéma|2012]], premier long métrage de fiction tourné à Tchernobyl.
* ''[[Chroniques de Tchernobyl]]'', réalisé par Bradley Parker avec Devin Kelley, Jonathan Sadowski, Ingrid Bolso Berdal, long métrage, épouvante, 2012.


=== The United Nations Development Programme ===
=== Articles connexes ===
The [[United Nations Development Programme]] has launched in 2003 a specific project called the [[Chernobyl Recovery and Development Programme]] (CRDP) for the recovery of the affected areas.<ref>{{cite web|url=http://www.undp.org.ua/?page=projects&projects=14 |title=CRDP: Chernobyl Recovery and Development Programme (United Nations Development Programme) |publisher=Undp.org.ua |accessdate=31 July 2010}}</ref> The programme was initiated in February 2002 based on the recommendations in the report on Human Consequences of the Chernobyl Nuclear Accident. The main goal of the CRDP's activities is supporting the [[Government of Ukraine]] in mitigating long-term social, economic, and ecological consequences of the Chernobyl catastrophe. CRDP works in the four most Chernobyl-affected areas in Ukraine: [[Kyivska]], [[Zhytomyr Oblast|Zhytomyrska]], [[Chernihiv Oblast|Chernihivska]] and [[Rivnenska]].
* [[Énergie nucléaire]]
* [[Liste des accidents nucléaires]]
* [[Échelle internationale des événements nucléaires]]
* [[Faibles doses d'irradiation]]
* [[Chernobyl Recovery and Development Programme]]
* [[Catastrophe nucléaire de Kychtym]]
* [[Catastrophe nucléaire de Fukushima]]
* [[Conséquences de la catastrophe de Tchernobyl en France]]


=== The International Project on the Health Effects of the Chernobyl Accident ===
=== Liens externes ===
{{trop de liens}}
* {{mul}} {{ODP|World/Fran%C3%A7ais/Soci%C3%A9t%C3%A9/Solidarit%C3%A9/Aide_humanitaire/Secours_en_cas_de_conflits_et_catastrophes/Catastrophe_de_Tchernobyl/|Catastrophe de Tchernobyl}}
* [http://www.irsn.fr/FR/popup/Pages/tchernobyl_video_nuage.aspx Animation représentant l'activité volumique du césium 137 au-dessus de l'Europe entre le 26 avril et le 6 mai 1986] – site de l'[[Institut de radioprotection et de sûreté nucléaire|IRSN]].
** [http://www.irsn.fr/FR/base_de_connaissances/Installations_nucleaires/La_surete_Nucleaire/Les-accidents-nucleaires/accident-tchernobyl-1986/consequences-homme-environnement/Documents/irsn_tchernobyl_animation-nuage.pdf Note d'accompagnement] {{pdf}}
* [http://www.irsn.fr/FR/base_de_connaissances/Installations_nucleaires/La_surete_Nucleaire/Les-accidents-nucleaires/accident-tchernobyl-1986 Les leçons de Tchernobyl] – dossier complet de l'IRSN. [http://www.irsn.fr/FR/base_de_connaissances/librairie/Documents/publications_grand_public/IRSN_Livret_Tchernobyl_2011.pdf Tchernobyl, 25 ans après], Panorama de l'accident.
* [http://www.greenfacts.org/fr/tchernobyl/tchernobyl-greenfacts.pdf Consensus scientifique sur l'accident nucléaire de Tchernobyl] – GreenFacts {{pdf}}
* {{en}} [http://www.unicef.org/newsline/chernobylreport.pdf The human consequences of the Chernobyl nuclear accident. A strategy for recovery] – [[Unicef]], janvier 2002 {{pdf}}
* [http://www.oecd-nea.org/rp/chernobyl/fr/c04.html Estimations de doses] – [[Organisation de coopération et de développement économiques|OCDE]]
* [http://www.oecd-nea.org/rp/reports/2003/nea3509-tchernobyl.pdf Tchernobyl. Évaluation de l’impact radiologique et sanitaire] – OCDE, décembre 2002 {{pdf}}
* [http://videos.arte.tv/fr/videos/tchernobyl_une_histoire_naturelle-3224506.html ''Tchernobyl : une histoire naturelle''], produit et diffusé par [[Arte]]. Ce documentaire exceptionnel n'est plus disponible en ligne, mais analysé et retranscrit dans [http://culturevisuelle.org/catastrophes/2010/05/27/tchernobyl-nature/ Tchernobyl, c’est le paradis (des bêtes)]
* [http://culturevisuelle.org/catastrophes/2011/03/15/tchernobyl-aujourdhui-naturalisation-dune-catastrophe/ Tchernobyl aujourd’hui. Naturalisation d’une catastrophe.] – un état des lieux, mars 2011.
* [http://www.spotimage.com/FlipBook/Tchernobyl/FRA/index.html 25 ans d'imagerie satellite sur Tchernobyl]
* [http://rouilleandco.carbonmade.com/projects/4612386#1 Photos de la ville de Pripyat aujourd'hui]


The International Project on the Health Effects of the Chernobyl Accident (IPEHCA) was created and received [[US $]]20&nbsp;million, mainly from Japan, in hopes of discovering the main cause of health problems due to <sup>131</sup>I radiation. These funds were divided between Ukraine, Belarus, and Russia, the three main affected countries, for further investigation of health effects. As there was significant corruption in former Soviet countries, most of the foreign aid was given to Russia, and no positive outcome from this money has been demonstrated.{{Citation needed|date=March 2011}}


== Commemoration ==
{{Palette|Catastrophe nucléaire de Tchernobyl|Accidents et incidents nucléaires|Histoire de l'Ukraine}}
[[File:Médailles liquidateurs.jpg|thumb|Soviet badge awarded to [[liquidator (Chernobyl)|liquidator]]s]]
{{Portail|sécurité civile et pompiers|énergie|nucléaire|années 1980|URSS|Ukraine}}


[http://www.susandwhite.com.au/drawings_prints/1986frontver.html ''The Front Veranda'' (1986)], a lithograph by [[Susan Dorothea White]] in the [[National Gallery of Australia]], exemplifies worldwide awareness of the event. ''Heavy Water: A film for Chernobyl'' was released by [[Seventh Art Productions|Seventh Art]] in 2006 to commemorate the disaster through poetry and first-hand accounts.<ref>{{cite web|url=http://www.moviemail-online.co.uk/scripts/article.pl?articleID=308 |title=Processing the Dark: ''Heavy Water&nbsp;– A Film for Chernobyl'' &#124; Movie Mail UK |publisher=Moviemail-online.co.uk |accessdate=31 July 2010}}</ref> The film secured the [[Cinequest Award]] as well as the Rhode Island "best score" award<ref>{{cite web |url=http://www.heavy-water.co.uk/ |title=Blog |accessdate=11 September 2010}}</ref> along with a screening at Tate Modern.<ref>{{cite web|url=http://www.atomictv.com/Hwater.html |title=Heavy Water: a film for Chernobyl |publisher=Atomictv.com |date=26 April 1986 |accessdate=31 July 2010}}</ref>
[[Catégorie:Accident nucléaire]]
[[Catégorie:Catastrophe industrielle en Europe]]
[[Catégorie:Histoire du nucléaire]]
[[Catégorie:Programme nucléaire de l'Union soviétique]]
[[Catégorie:Programme nucléaire de l'Ukraine]]
[[Catégorie:Catastrophe de Tchernobyl| 00]]
[[Catégorie:1986 en Union soviétique]]
<!--[[Catégorie:1986 en Ukraine]]-->
[[Catégorie:Avril 1986]]


[[Chernobyl Way]] is an annual rally run on 26 April by the opposition in Belarus as a remembrance of the Chernobyl disaster.
{{Lien AdQ|eu}}

{{Lien AdQ|ka}}
== Cultural impact ==
{{Lien AdQ|ru}}
{{main|Cultural impact of the Chernobyl disaster|Nuclear power debate}}
{{Lien AdQ|sk}}

{{Lien AdQ|sl}}
The Chernobyl accident attracted a great deal of interest. Because of the distrust that many people (both within and outside the [[USSR]]) had in the [[Soviet]] authorities, a great deal of debate about the situation at the site occurred in the [[first world]] during the early days of the event. Because of defective [[intelligence (information gathering)|intelligence]] based on [[satellite imagery|photographs taken from space]], it was thought that unit number three had also suffered a dire accident.
{{Lien AdQ|vi}}

{{Lien BA|de}}
Journalists mistrusted many professionals (such as the spokesman from the UK [[NRPB]]), and in turn encouraged the public to mistrust them.<ref>{{cite book|last=Kasperson|first=Roger E.|coauthors=Stallen, Pieter Jan M.|title=Communicating Risks to the Public: International Perspectives|publisher=Springer Science and Media|year=1991|location=Berlin|pages=160–162|isbn=0-7923-0601-5}}</ref>
{{Lien BA|eo}}

{{Lien BA|uk}}
In Italy, the Chernobyl accident was reflected in the outcome of the [[Italian nuclear power referendum, 1987|1987 referendum]]. As a result of that referendum, Italy began phasing out its nuclear power plants in 1988, a decision that was effectively [[Nuclear power in Italy|reversed in 2008]]. A [[Italian referendums, 2011#Nuclear power|referendum in 2011]] reiterated Italians' strong objections to nuclear power, thus abrogating the government's decision of 2008.

== See also ==
{{div col|width=30em}}
* [[Chernobyl compared to other radioactivity releases]]
* [[Chernobyl Nuclear Power Plant Exclusion Zone]]
* [[Children of Chernobyl Benefit Concert]]
* [[List of Chernobyl-related articles]]
* [[Nuclear energy policy of the United States#Public opinion after Chernobyl|US public opinion on nuclear energy policy after Chernobyl]]
* [[Seconds From Disaster#Episodes|National Geographic ''Seconds From Disaster'' episodes]]
* [[Threat of the Dnieper reservoirs]]
* [[Zero Hour (2004 TV series)|Zero Hour (TV series)]] episode, showing the inside of the power plant with remarkable accuracy
{{div col end}}

== Notes ==
{{reflist|group=notes}}

== References ==
{{Reflist|30em}}

== Further reading ==
{{refbegin|30em}}
* {{Cite book|last=Abbott|first=Pamela|title=Chernobyl: Living With Risk and Uncertainty|publisher=Health, Risk & Society 8.2|year=2006|pages=105–121}}
* {{Cite book|last=Cheney|first=Glenn Alan|title=Journey to Chernobyl: Encounters in a Radioactive Zone|publisher=Academy Chicago|year=1995|isbn=0-89733-418-3|oclc=231661295}}
* {{Cite book|last=Cohen|first=Bernard Leonard|authorlink=Bernard Cohen (physicist)|title=The Nuclear Energy Option: An Alternative for the 90's|publisher=Plenum Press|year=1990|isbn=978-0-306-43567-6|chapter=(7) The Chernobyl accident&nbsp;– can it happen here?}}
* {{Cite book|last=Dyatlov|first=Anatoly|authorlink=Anatoly Dyatlov|title=Chernobyl. How did it happen.|publisher=Nauchtechlitizdat, Moscow|year=2003|isbn=5-93728-006-7 (paperback)|language=Russian}}
* {{Cite book|last=Hoffmann|first=Wolfgang|title=Fallout From the Chernobyl Nuclear Disaster and Congenital Malformations in Europe|publisher=Archives of Environmental Health|year=2001}}
* {{Cite book|last=Karpan|first=Nikolaj V.|title=[[Chernobyl. Vengeance of peaceful atom.]]|publisher=IKK "Balance Club" |location=Dnepropetrovsk|year=2006|isbn=966-8135-21-0 (paperback)|language=Russian}}
* {{Cite book|last=Medvedev|first=Grigori|title=[[The Truth About Chernobyl]]|publisher=VAAP. First American edition published by Basic Books in 1991|year=1989|isbn=2-226-04031-5 (Hardcover)}}
* {{Cite book|last=Medvedev|first=Zhores A.|authorlink=Zhores A. Medvedev|title=The Legacy of Chernobyl|publisher=W. W. Norton & Company |year=1990|isbn=978-0-393-30814-3 |edition=paperback |note=First American edition published in 1990}}
* {{Cite book|last=Read|first=Piers Paul|authorlink=Piers Paul Read|title=Ablaze! The Story of the Heroes and Victims of Chernobyl|publisher=Random House UK (paperback 1997) |year=1993|isbn=978-0-7493-1633-4 (paperback)}}
* {{Cite book|last=Shcherbak|first=Yurii|title=Chernobyl|location=New York|publisher=Soviet Writers/St. Martin's Press|year=1991/1989|url=http://www.x-libri.ru/elib/sherb000/index.htm|language=Russian/English|isbn=0-312-03097-5}}

=== Documents ===
The source documents relating to the emergency, published in unofficial sources:
* [http://accidont.ru/archive/Reglament.pdf Technological Regulations on operation of 3 and 4 power units of Chernobyl NPP] (in force at the moment of emergency)
* [http://accidont.ru/ENG/datas.html Tables and graphs of some parameters variation of the unit before the emergency]
{{refend}}

== External links ==
{{wikiquote}}
{{Commons category|Chernobyl disaster}}
* [http://chernobyl.undp.org/ Official UN Chernobyl site]
* [http://chernobyl.info/ International Chernobyl Portal chernobyl.info, UN Inter-Agency Project ICRIN]
* [http://www.iaea.or.at/NewsCenter/Features/Chernobyl-15/cherno-faq.shtml Frequently Asked Chernobyl Questions], by the IAEA
* [http://www.crdp.org.ua/en/ Chernobyl Recovery and Development Programme (United Nations Development Programme)]
* [http://www.rapik.com/photo/thumbnails.php?album=38 Photographs from inside the zone of alienation and City of Prypyat (2010)]
* [http://gerdludwig.com/html/chernobyl_zone.htm Photographs from inside the Chernobyl Reactor and City of Prypyat]
* [http://gerdludwig.com/html/chernobyl_victims.htm Photographs of those affected by the Chernobyl Disaster]
* [http://chelu.eu/Blog/?p=88 Photographs from the City of Pripyat, and of those affected by the disaster]
* [http://englishrussia.com/index.php/2009/04/29/at-the-nuclear-power-plant/ EnglishRussia Photos of a RBMK-based power plant], showing details of the reactor hall, pumps, and the control room
* [http://www.spotimage.com/FlipBook/Tchernobyl/ENG/index.html 25 years of satellite imagery over Chernobyl]
*[http://repository.library.georgetown.edu/handle/10822/552539 Post-Soviet Pollution: Effects of Chernobyl] from the [http://www.library.georgetown.edu/digital/krogh Dean Peter Krogh Foreign Affairs Digital Archives]
<!--
*********************** ({{No More Links}}) ***************************
* Please be cautious in adding more links to this article. Wikipedia *
* is not a collection of links nor should it be used for advertising. *
* *
* Excessive or inappropriate links Will-Be-Deleted. *
* See [[Wikipedia:External links]] & [[Wikipedia:Spam]] for details. *
* *
* If there are already plentiful links, please propose additions or *
* replacements on this article's discussion page, or submit your link *
* to the relevant category at the Open Directory Project (dmoz.org) *
* and link back to that category using the {{dmoz}} template. *
********************** ({{No More Links}}) ****************************-->

{{Coord|51|23|23|N|30|05|57|E |region:UA_type:landmark |display=title |name=Chernobyl disaster}}
{{Chernobyl disaster}}

{{DEFAULTSORT:Chernobyl Disaster}}
[[Category:Chernobyl disaster| ]]
[[Category:Civilian nuclear power accidents]]
[[Category:Disasters in Ukraine]]
[[Category:Disasters in Belarus]]
[[Category:Disasters in the Soviet Union]]
[[Category:Energy in Ukraine]]
[[Category:Health in Ukraine]]
[[Category:History of Belarus (1945–1990)]]
[[Category:History of the Soviet Union and Soviet Russia]]
[[Category:Industrial accidents and incidents]]
[[Category:Industrial fires and explosions]]
[[Category:Nuclear accidents and incidents]]
[[Category:1986 in the environment]]
[[Category:1986 in the Soviet Union]]
[[Category:1986 health disasters]]
[[Category:20th-century explosions]]

{{Link GA|de}}
{{Link GA|eo}}
{{Link GA|uk}}
{{Link FA|eu}}
{{Link FA|ka}}
{{Link FA|ru}}
{{Link FA|sk}}
{{Link FA|sl}}
{{Link FA|vi}}


[[als:Katastrophe von Tschernobyl]]
[[als:Katastrophe von Tschernobyl]]
[[ar:كارثة تشيرنوبيل]]
[[ar:كارثة تشيرنوبيل]]
[[az:Çernobıl faciəsi]]
[[az:Çernobıl faciəsi]]
[[bn:চেরনোবিলের বিপর্যয়]]
[[be:Чарнобыльская катастрофа]]
[[be:Чарнобыльская катастрофа]]
[[be-x-old:Чарнобыльская катастрофа]]
[[be-x-old:Чарнобыльская катастрофа]]
[[bg:Чернобилска авария]]
[[bg:Чернобилска авария]]
[[bn:চেরনোবিলের বিপর্যয়]]
[[bs:Černobilska katastrofa]]
[[bs:Černobilska katastrofa]]
[[ca:Accident de Txernòbil]]
[[ca:Accident de Txernòbil]]
Ligne 367 : Ligne 703 :
[[da:Tjernobylulykken]]
[[da:Tjernobylulykken]]
[[de:Nuklearkatastrophe von Tschernobyl]]
[[de:Nuklearkatastrophe von Tschernobyl]]
[[et:Tšornobõli katastroof]]
[[el:Πυρηνικό ατύχημα του Τσερνόμπιλ]]
[[el:Πυρηνικό ατύχημα του Τσερνόμπιλ]]
[[es:Accidente de Chernóbil]]
[[en:Chernobyl disaster]]
[[eo:Nuklea akcidento de Ĉernobilo]]
[[eo:Nuklea akcidento de Ĉernobilo]]
[[es:Accidente de Chernóbil]]
[[et:Tšornobõli katastroof]]
[[eu:Txernobylgo hondamendia]]
[[eu:Txernobylgo hondamendia]]
[[fa:حادثه چرنوبیل]]
[[fa:حادثه چرنوبیل]]
[[fi:Tšernobylin ydinvoimalaonnettomuus]]
[[fo:Tjernobyl vanlukkan]]
[[fo:Tjernobyl vanlukkan]]
[[fr:Catastrophe nucléaire de Tchernobyl]]
[[fy:Kearnramp fan Tsjernobyl]]
[[fy:Kearnramp fan Tsjernobyl]]
[[gd:Chernobyl]]
[[gd:Chernobyl]]
[[gl:Accidente de Chernóbil]]
[[gl:Accidente de Chernóbil]]
[[ko:체르노빌 원자력 발전소 사고]]
[[he:אסון צ'רנוביל]]
[[hy:Չեռնոբիլի ատոմակայանի վթար]]
[[hr:Černobilska katastrofa]]
[[hr:Černobilska katastrofa]]
[[hu:Csernobili atomkatasztrófa]]
[[hy:Չեռնոբիլի ատոմակայանի վթար]]
[[id:Bencana Chernobyl]]
[[io:Chernobyl-katastrofo]]
[[io:Chernobyl-katastrofo]]
[[id:Bencana Chernobyl]]
[[it:Disastro di Černobyl']]
[[it:Disastro di Černobyl']]
[[he:אסון צ'רנוביל]]
[[ja:チェルノブイリ原子力発電所事故]]
[[ka:ჩერნობილის კატასტროფა]]
[[ka:ჩერნობილის კატასტროფა]]
[[kk:Чернобыль апаты]]
[[kk:Чернобыль апаты]]
[[lv:Černobiļas AES katastrofa]]
[[ko:체르노빌 원자력 발전소 사고]]
[[lb:Katastroph vun Tschernobyl]]
[[lb:Katastroph vun Tschernobyl]]
[[lt:Černobylio avarija]]
[[lt:Černobylio avarija]]
[[hu:Csernobili atomkatasztrófa]]
[[lv:Černobiļas AES katastrofa]]
[[mg:Voina tao Chernobyl]]
[[mk:Чернобилска несреќа]]
[[mk:Чернобилска несреќа]]
[[mg:Voina tao Chernobyl]]
[[ml:ചെർണോബിൽ ദുരന്തം]]
[[ml:ചെർണോബിൽ ദുരന്തം]]
[[mn:Чернобылийн осол]]
[[mr:चेर्नोबिल दुर्घटना]]
[[mr:चेर्नोबिल दुर्घटना]]
[[ms:Bencana Chernobyl]]
[[ms:Bencana Chernobyl]]
[[mn:Чернобылийн осол]]
[[my:ချာနိုဘိုင်း နျူးကလီးယား ပေါက်ကွဲမှု]]
[[my:ချာနိုဘိုင်း နျူးကလီးယား ပေါက်ကွဲမှု]]
[[nl:Kernramp van Tsjernobyl]]
[[nl:Kernramp van Tsjernobyl]]
[[ja:チェルノブイリ原子力発電所事故]]
[[nn:Tsjernobylulukka]]
[[no:Tsjernobyl-ulykken]]
[[no:Tsjernobyl-ulykken]]
[[nn:Tsjernobylulukka]]
[[oc:Catastròfa de Chornobyl]]
[[oc:Catastròfa de Chornobyl]]
[[pl:Katastrofa elektrowni jądrowej w Czarnobylu]]
[[pl:Katastrofa elektrowni jądrowej w Czarnobylu]]
Ligne 409 : Ligne 744 :
[[ru:Авария на Чернобыльской АЭС]]
[[ru:Авария на Чернобыльской АЭС]]
[[sah:Чернобыль саахала]]
[[sah:Чернобыль саахала]]
[[sq:Katastrofa e Çernobilit]]
[[scn:Disastru di Chernobyl]]
[[scn:Disastru di Chernobyl]]
[[sh:Černobilska katastrofa]]
[[simple:Chernobyl disaster]]
[[simple:Chernobyl disaster]]
[[sk:Černobyľská havária]]
[[sk:Černobyľská havária]]
[[sl:Černobilska nesreča]]
[[sl:Černobilska nesreča]]
[[sq:Katastrofa e Çernobilit]]
[[sr:Чернобиљска катастрофа]]
[[sr:Чернобиљска катастрофа]]
[[sh:Černobilska katastrofa]]
[[fi:Tšernobylin ydinvoimalaonnettomuus]]
[[sv:Tjernobylolyckan]]
[[sv:Tjernobylolyckan]]
[[ta:செர்னோபில் அணு உலை விபத்து]]
[[ta:செர்னோபில் அணு உலை விபத்து]]
[[tt:Чернобыль һәлакәте]]
[[th:ภัยพิบัติเชอร์โนบิล]]
[[th:ภัยพิบัติเชอร์โนบิล]]
[[tr:Çernobil reaktör kazası]]
[[tr:Çernobil reaktör kazası]]
[[tt:Чернобыль һәлакәте]]
[[uk:Чорнобильська катастрофа]]
[[uk:Чорнобильська катастрофа]]
[[vi:Thảm họa Chernobyl]]
[[vi:Thảm họa Chernobyl]]
[[vls:Tsjernobyl]]
[[vls:Tsjernobyl]]
[[zh:切尔诺贝利核事故]]
[[zh-yue:切爾諾貝爾核災]]
[[zh-yue:切爾諾貝爾核災]]
[[zh:切尔诺贝利核事故]]

Version du 15 février 2013 à 14:36

Modèle:About Modèle:Pp-semi-protected Modèle:Use dmy dates Modèle:Infobox news event

Location of Chernobyl nuclear power plant
The abandoned city of Pripyat with Chernobyl plant in the distance
Abandoned housing blocks in Pripyat

The Chernobyl disaster (ukrainien : Чорнобильська катастрофа, Chornobylska KatastrofaChornobyl Catastrophe) was a catastrophic nuclear accident that occurred on 26 April 1986 at the Chernobyl Nuclear Power Plant in Ukraine (then officially Ukrainian SSR), which was under the direct jurisdiction of the central authorities of the Soviet Union. An explosion and fire released large quantities of radioactive particles into the atmosphere, which spread over much of Western USSR and Europe.

The Chernobyl disaster is widely considered to have been the worst nuclear power plant accident in history, and is one of only two classified as a level 7 event on the International Nuclear Event Scale (the other being the Fukushima Daiichi nuclear disaster in 2011).[1] The battle to contain the contamination and avert a greater catastrophe ultimately involved over 500,000 workers and cost an estimated 18 billion rubles.[2] The official Soviet casualty count of 31 deaths has been disputed, and long-term effects such as cancers and deformities are still being accounted for.

Summary

The disaster began during a systems test on Saturday, 26 April 1986 at reactor number four of the Chernobyl plant, which is near the city of Pripyat and in proximity to the administrative border with Belarus and the Dnieper river. There was a sudden and unexpected power surge, and when an emergency shutdown was attempted, an exponentially larger spike in power output occurred, which led to a reactor vessel rupture and a series of steam explosions. These events exposed the graphite moderator of the reactor to air, causing it to ignite.[3] The resulting fire sent a plume of highly radioactive fallout into the atmosphere and over an extensive geographical area, including Pripyat. The plume drifted over large parts of the western Soviet Union and Europe. From 1986 to 2000, 350,400 people were evacuated and resettled from the most severely contaminated areas of Belarus, Russia, and Ukraine.[4][5] According to official post-Soviet data,[6][7] about 60% of the fallout landed in Belarus.

The accident raised concerns about the safety of the Soviet nuclear power industry, as well as nuclear power in general, slowing its expansion for a number of years and forcing the Soviet government to become less secretive about its procedures.[8][notes 1] The government coverup of the Chernobyl disaster was a "catalyst" for glasnost, which "paved the way for reforms leading to the Soviet collapse".[9]

Russia, Ukraine, and Belarus have been burdened with the continuing and substantial decontamination and health care costs of the Chernobyl accident. A report by the International Atomic Energy Agency examines the environmental consequences of the accident.[7] Another UN agency, UNSCEAR, has estimated a global collective dose of radiation exposure from the accident "equivalent on average to 21 additional days of world exposure to natural background radiation"; individual doses were far higher than the global mean among those most exposed, including 530,000 local recovery workers who averaged an effective dose equivalent to an extra 50 years of typical natural background radiation exposure each.[10][11][12] Estimates of the number of deaths that will eventually result from the accident vary enormously; disparities reflect both the lack of solid scientific data and the different methodologies used to quantify mortality – whether the discussion is confined to specific geographical areas or extends worldwide, and whether the deaths are immediate, short term, or long term.

Thirty one deaths are directly attributed to the accident, all among the reactor staff and emergency workers.[13] An UNSCEAR report places the total confirmed deaths from radiation at 64 as of 2008. The Chernobyl Forum estimates that the eventual death toll could reach 4,000 among those exposed to the highest levels of radiation (200,000 emergency workers, 116,000 evacuees and 270,000 residents of the most contaminated areas); this figure includes some 50 emergency workers who died of acute radiation syndrome, nine children who died of thyroid cancer and an estimated total of 3940 deaths from radiation-induced cancer and leukemia.[14]

The Union of Concerned Scientists estimates that, among the hundreds of millions of people living in broader geographical areas, there will be 50,000 excess cancer cases resulting in 25,000 excess cancer deaths.[15] For this broader group, the 2006 TORCH report predicts 30,000 to 60,000 excess cancer deaths,[16] and a Greenpeace report puts the figure at 200,000 or more.[17] The Russian publication Chernobyl concludes that among the billions of people worldwide who were exposed to radioactive contamination from the disaster, nearly a million premature cancer deaths occurred between 1986 and 2004.[18]

Accident

Fichier:Chernobyl model.jpg
A model of the Chernobyl reactor after the lid of the reactor chamber blew off. Ukrainian National Chornobyl Museum, Kiev, Ukraine.

On 26 April 1986, at 01:23 (UTC+3), reactor four suffered a catastrophic power increase, leading to explosions in its core. This dispersed large quantities of radioactive fuel and core materials into the atmosphere[19]:73 and ignited the combustible graphite moderator. The burning graphite moderator increased the emission of radioactive particles, carried by the smoke, as the reactor had not been encased by any kind of hard containment vessel. The accident occurred during an experiment scheduled to test a potential safety emergency core cooling feature, which took place during a normal shutdown procedure.

Steam turbine tests

An inactive nuclear reactor continues to generate a significant amount of residual decay heat. In an initial shut-down state (for example, following an emergency SCRAM) the reactor produces around 7 percent of its total thermal output and requires cooling to avoid core damage. RBMK reactors, like those at Chernobyl, use water as coolant.[20][21] Reactor 4 at Chernobyl consisted of about 1,600 individual fuel channels; each required a coolant flow of 28 metric tons (28 000 litres /  Unité « gal » inconnue du modèle {{Conversion}}.) per hour.[19]:7

Since cooling pumps require electricity to cool a reactor after a SCRAM, in the event of a power grid failure, Chernobyl's reactors had three backup diesel generators; these could start up in 15 seconds, but took 60–75 seconds[19]:15 to attain full speed and reach the 5.5‑megawatt (MW) output required to run one main pump.[19]:30

To solve this one-minute gap, considered an unacceptable safety risk, it had been theorised that rotational energy from the steam turbine (as it wound down under residual steam pressure) could be used to generate the required electrical power. Analysis indicated that this residual momentum and steam pressure might be sufficient to run the coolant pumps for 45 seconds,[19]:16 bridging the gap between an external power failure and the full availability of the emergency generators.[22]

This capability still needed to be confirmed experimentally, and previous tests had ended unsuccessfully. An initial test carried out in 1982 showed that the excitation voltage of the turbine-generator was insufficient; it did not maintain the desired magnetic field after the turbine trip. The system was modified, and the test was repeated in 1984 but again proved unsuccessful. In 1985, the tests were attempted a third time but also yielded negative results. The test procedure was to be repeated again in 1986, and it was scheduled to take place during the maintenance shutdown of Reactor Four.[22]

The test focused on the switching sequences of the electrical supplies for the reactor. The test procedure was to begin with an automatic emergency shutdown. No detrimental effect on the safety of the reactor was anticipated, so the test program was not formally coordinated with either the chief designer of the reactor (NIKIET) or the scientific manager. Instead, it was approved only by the director of the plant (and even this approval was not consistent with established procedures).[23]

According to the test parameters, the thermal output of the reactor should have been no lower than 700 MW at the start of the experiment. If test conditions had been as planned, the procedure would almost certainly have been carried out safely; the eventual disaster resulted from attempts to boost the reactor output once the experiment had been started, which was inconsistent with approved procedure.[23]

The Chernobyl power plant had been in operation for two years without the capability to ride through the first 60–75 seconds of a total loss of electric power, and thus lacked an important safety feature. The station managers presumably wished to correct this at the first opportunity, which may explain why they continued the test even when serious problems arose, and why the requisite approval for the test had not been sought from the Soviet nuclear oversight regulator (even though there was a representative at the complex of 4 reactors).[notes 2]:18–20

The experimental procedure was intended to run as follows:

  1. The reactor was to be running at a low power level, between 700 MW and 800 MW.
  2. The steam-turbine generator was to be run up to full speed.
  3. When these conditions were achieved, the steam supply for the turbine generator was to be closed off.
  4. Turbine generator performance was to be recorded to determine whether it could provide the bridging power for coolant pumps until the emergency diesel generators were sequenced to start and provide power to the cooling pumps automatically.
  5. After the emergency generators reached normal operating speed and voltage, the turbine generator would be allowed to freewheel down.

Conditions prior to the accident

A schematic diagram of the reactor

The conditions to run the test were established before the day shift of 25 April 1986. The day shift workers had been instructed in advance and were familiar with the established procedures. A special team of electrical engineers was present to test the new voltage regulating system.[24] As planned, a gradual reduction in the output of the power unit was begun at 01:06 on 25 April, and the power level had reached 50% of its nominal 3200 MW thermal level by the beginning of the day shift.

At this point, another regional power station unexpectedly went offline, and the Kiev electrical grid controller requested that the further reduction of Chernobyl's output be postponed, as power was needed to satisfy the peak evening demand. The Chernobyl plant director agreed, and postponed the test.

At 23:04, the Kiev grid controller allowed the reactor shut-down to resume. This delay had some serious consequences: the day shift had long since departed, the evening shift was also preparing to leave, and the night shift would not take over until midnight, well into the job. According to plan, the test should have been finished during the day shift, and the night shift would only have had to maintain decay heat cooling systems in an otherwise shut down plant.[19]:36–8

The night shift had very limited time to prepare for and carry out the experiment. A further rapid reduction in the power level from 50% was executed during the shift change-over. Alexander Akimov was chief of the night shift, and Leonid Toptunov was the operator responsible for the reactor's operational regimen, including the movement of the control rods. Toptunov was a young engineer who had worked independently as a senior engineer for approximately three months.[19]:36–8

The test plan called for a gradual reduction in power output from reactor 4 to a thermal level of 700–1000 MW.[25] An output of 700 MW was reached at 00:05 on 26 April. However, due to the natural production of xenon-135, a neutron absorber, core power continued to decrease without further operator action—a process known as reactor poisoning. As the reactor power output dropped further, to approximately 500 MW, Toptunov mistakenly inserted the control rods too far—the exact circumstances leading to this are unknown because both Akimov and Toptunov were killed during the later explosion. This combination of factors rendered the reactor in an unintended near-shutdown state, with a power output of 30 MW thermal or less.

The reactor was now only producing around 5 percent of the minimum initial power level established as safe for the test.[23]:73 Control-room personnel consequently made the decision to restore power by extracting the majority of the reactor control rods to their upper limits.[26] Several minutes elapsed between their extraction and the point that the power output began to increase and subsequently stabilize at 160–200 MW (thermal), a much smaller value than the planned 700 MW. The rapid reduction in the power during the initial shutdown, and the subsequent operation at a level of less than 200 MW led to increased poisoning of the reactor core by the accumulation of xenon-135.[27][28] This restricted any further rise of reactor power, and made it necessary to extract additional control rods from the reactor core in order to counteract the poisoning.

Fichier:Kiev-UkrainianNationalChernobylMuseum 08.jpg
Chernobyl plant model on display at Kiev Ukrainian National Chernobyl Museum

The operation of the reactor at the low power level and high poisoning level, was accompanied by unstable core temperature and coolant flow, and possibly by instability of neutron flux. Various alarms started going off at this point. The control room received repeated emergency signals regarding the levels in the steam/water separator drums, and large excursions or variations in the flow rate of feed water, as well as from relief valves opened to relieve excess steam into a turbine condenser, and from the neutron power controller. In the period between 00:35 and 00:45, emergency alarm signals concerning thermal-hydraulic parameters were ignored, apparently to preserve the reactor power level. Emergency signals from the reactor emergency protection system (EPS-5) triggered a trip that turned off both turbine-generators.[29]

After a while, a more or less stable state at a power level of 200 MW was achieved, and preparation for the experiment continued. As part of the test plan, extra water pumps were activated at 01:05 on 26 April, increasing the water flow. The increased coolant flow rate through the reactor produced an increase in the inlet coolant temperature of the reactor core, which now more closely approached the nucleate boiling temperature of water, reducing the safety margin.

The flow exceeded the allowed limit at 01:19. At the same time, the extra water flow lowered the overall core temperature and reduced the existing steam voids in the core.[30] Since water also absorbs neutrons (and the higher density of liquid water makes it a better absorber than steam), turning on additional pumps decreased the reactor power further still. This prompted the operators to remove the manual control rods further to maintain power.[31]

All these actions led to an extremely unstable reactor configuration. Nearly all of the control rods were removed, which would limit the value of the safety rods when initially inserted in a SCRAM condition. Further, the reactor coolant had reduced boiling, but had limited margin to boiling, so any power excursion would produce boiling, reducing neutron absorption by the water. The reactor was in an unstable configuration that was clearly outside the safe operating envelope established by the designers.

Experiment and explosion

Fichier:Chernobyl burning-aerial view of core.jpg
Aerial view of the damaged core on 3 May 1986. Roof of the turbine hall is damaged (image center). Roof of the adjacent reactor 3 (image lower left) shows minor fire damage.
Fichier:Ejected graphite from Chernobyl core.jpg
Lumps of graphite moderator ejected from the core. The largest lump shows an intact control rod channel.

At 1:23:04 a.m. the experiment began. Four (of eight total) Main Circulating Pumps (MCP) were active. The steam to the turbines was shut off, and a run down of the turbine generator began. The diesel generator started and sequentially picked up loads, which was complete by 01:23:43. During this period, the power for the four MCPs was supplied by the turbine generator as it coasted down. As the momentum of the turbine generator decreased, the water flow rate decreased, leading to increased formation of steam voids (bubbles) in the core.

Because of the positive void coefficient of the RBMK reactor at low reactor power levels, it was now primed to embark on a positive feedback loop, in which the formation of steam voids reduced the ability of the liquid water coolant to absorb neutrons, which in turn increased the reactor's power output. This caused yet more water to flash into steam, giving yet a further power increase. However, during almost the entire period of the experiment the automatic control system successfully counteracted this positive feedback, continuously inserting control rods into the reactor core to limit the power rise.

At 1:23:40, as recorded by the SKALA centralized control system, an emergency shutdown of the reactor, which inadvertently triggered the explosion, was initiated. The SCRAM was started when the EPS-5 button (also known as the AZ-5 button) of the reactor emergency protection system was pressed: this fully inserted all control rods, including the manual control rods that had been incautiously withdrawn earlier. The reason why the EPS-5 button was pressed is not known, whether it was done as an emergency measure or simply as a routine method of shutting down the reactor upon completion of the experiment.

There is a view that the SCRAM may have been ordered as a response to the unexpected rapid power increase, although there is no recorded data conclusively proving this. Some have suggested that the button was not pressed, and instead the signal was automatically produced by the emergency protection system; however, the SKALA clearly registered a manual SCRAM signal. In spite of this, the question as to when or even whether the EPS-5 button was pressed has been the subject of debate. There are assertions that the pressure was caused by the rapid power acceleration at the start, and allegations that the button was not pressed until the reactor began to self-destruct but others assert that it happened earlier and in calm conditions.[32]:578[33]

After the EPS-5 button was pressed, the insertion of control rods into the reactor core began. The control rod insertion mechanism moved the rods at 0.4 m/s, so that the rods took 18 to 20 seconds to travel the full height of the core, about 7 meters. A bigger problem was a flawed graphite-tip control rod design, which initially displaced coolant before inserting neutron-absorbing material to slow the reaction. As a result, the SCRAM actually increased the reaction rate in the lower half of the core.

A few seconds after the start of the SCRAM, a massive power spike occurred, the core overheated, and seconds later this overheating resulted in the initial explosion. Some of the fuel rods fractured, blocking the control rod columns and causing the control rods to become stuck at one-third insertion. Within three seconds the reactor output rose above 530 MW.[19]:31

The subsequent course of events was not registered by instruments: it is known only as a result of mathematical simulation. Apparently, a great rise in power first caused an increase in fuel temperature and massive steam buildup, leading to a rapid increase in steam pressure. This destroyed fuel elements and ruptured the channels in which these elements were located.[34]

Then, according to some estimations, the reactor jumped to around 30 GW thermal, ten times the normal operational output. The last reading on the control panel was 33 GW. It was not possible to reconstruct the precise sequence of the processes that led to the destruction of the reactor and the power unit building, but a steam explosion, like the explosion of a steam boiler from excess vapor pressure, appears to have been the next event. There is a general understanding that it was steam from the wrecked channels entering the reactor's inner structure that caused the destruction of the reactor casing, tearing off and lifting the 2,000-ton upper plate, to which the entire reactor assembly is fastened. Apparently, this was the first explosion that many heard.[35]:366 This explosion ruptured further fuel channels, and as a result the remaining coolant flashed to steam and escaped the reactor core. The total water loss in combination with a high positive void coefficient further increased the reactor power.

A second, more powerful explosion occurred about two or three seconds after the first; evidence indicates that the second explosion was from the core itself undergoing runaway criticality.[36] The nuclear excursion dispersed the core and effectively terminated the nuclear chain reaction. However, a graphite fire was burning by now, greatly contributing to the spread of radioactive material and the contamination of outlying areas.[37]

There were initially several hypotheses about the nature of the second explosion. One view was, "the second explosion was caused by the hydrogen which had been produced either by the overheated steam-zirconium reaction or by the reaction of red-hot graphite with steam that produced hydrogen and carbon monoxide." Another hypothesis was that the second explosion was a thermal explosion of the reactor as a result of the uncontrollable escape of fast neutrons caused by the complete water loss in the reactor core.[38] A third hypothesis was that the explosion was caused by steam. According to this version, the flow of steam and the steam pressure caused all the destruction that followed the ejection from the shaft of a substantial part of the graphite and fuel.

« According to observers outside Unit 4, burning lumps of material and sparks shot into the air above the reactor. Some of them fell on to the roof of the machine hall and started a fire. About 25 percent of the red-hot graphite blocks and overheated material from the fuel channels was ejected.... Parts of the graphite blocks and fuel channels were out of the reactor building.... As a result of the damage to the building an airflow through the core was established by the high temperature of the core. The air ignited the hot graphite and started a graphite fire.[19]:32 »

However, the ratio of xenon radioisotopes released during the event indicates that the second explosion could be a nuclear power transient. This nuclear transient released 40 GJ of energy, the equivalent of about ten tons of TNT. The analysis indicates that the nuclear excursion was limited to a small portion of the core.[36]

Contrary to safety regulations, bitumen, a combustible material, had been used in the construction of the roof of the reactor building and the turbine hall. Ejected material ignited at least five fires on the roof of the adjacent reactor 3, which was still operating. It was imperative to put those fires out and protect the cooling systems of reactor 3.[19]:42 Inside reactor 3, the chief of the night shift, Yuri Bagdasarov, wanted to shut down the reactor immediately, but chief engineer Nikolai Fomin would not allow this. The operators were given respirators and potassium iodide tablets and told to continue working. At 05:00, however, Bagdasarov made his own decision to shut down the reactor, leaving only those operators there who had to work the emergency cooling systems.[19]:44

Radiation levels

Approximate radiation levels at different locations shortly after the explosion were as follows:[39]

Location Radiation (Roentgens per hour) Sieverts per hour (SI Unit)
Vicinity of the reactor core 30,000 300
Fuel fragments 15,000–20,000 150–200
Debris heap at the place of circulation pumps 10,000 100
Debris near the electrolyzers 5,000–15,000 50–150
Water in the Level +25 feedwater room 5,000 50
Level 0 of the turbine hall 500–15,000 5–150
Area of the affected unit 1,000–1,500 10–15
Water in Room 712 1,000 10
Control room 3–5 0.03–0.05
Gidroelektromontazh depot 30 0.3
Nearby concrete mixing unit 10–15 0.10–0.15

Plant layout

Based on the image of the plant[40]
Level Objects
Metres Levels are distances above (or below for minus values) ground level at the site.
49.6 Roof of the reactor building, gallery of the refueling mechanism
39.9 Roof of the deaerator gallery
35.5 Floor of the main reactor hall
31.6 Upper side of the upper biological shield, floor of the space for pipes to steam separators
28.3 Lower side of the turbine hall roof
24.0 Deaerator floor, measurement and control instruments room
16.4 Floor of the pipe aisle in the deaerator gallery
12.0 Main floor of the turbine hall, floor of the main circulation pump motor compartments
10.0 Control room, floor under the reactor lower biological shield, main circulation pumps
6.0 Steam distribution corridor
2.2 Upper pressure suppression pool
0.0 Ground level; house switchgear, turbine hall level
−0.5 Lower pressure suppression pool
−5.2, −4.2 Other turbine hall levels
−6.5 Basement floor of the turbine hall

Individual involvement

Erreur : La version française équivalente de {{Main}} est {{Article détaillé}}.

Immediate crisis management

Radiation levels

Extremely high levels of radioactivity in the lava under the Chernobyl number four reactor in 1986

The radiation levels in the worst-hit areas of the reactor building have been estimated to be 5.6 roentgens per second (R/s) (1.4 milliamperes per kilogram), equivalent to more than 20,000 roentgens per hour. A lethal dose is around 500 roentgens (0.13 coulombs per kilogram) over 5 hours, so in some areas, unprotected workers received fatal doses within minutes. However, a dosimeter capable of measuring up to 1,000 R/s (0.3 A/kg) was inaccessible because of the explosion, and another one failed when turned on. All remaining dosimeters had limits of 0.001 R/s (0.3 µA/kg) and therefore read "off scale". Thus, the reactor crew could ascertain only that the radiation levels were somewhere above 0.001 R/s (3.6 R/h, or 0.3 µA/kg), while the true levels were much higher in some areas.[19]:42–50

Because of the inaccurate low readings, the reactor crew chief Alexander Akimov assumed that the reactor was intact. The evidence of pieces of graphite and reactor fuel lying around the building was ignored, and the readings of another dosimeter brought in by 04:30 were dismissed under the assumption that the new dosimeter must have been defective.[19]:42–50 Akimov stayed with his crew in the reactor building until morning, trying to pump water into the reactor. None of them wore any protective gear. Most, including Akimov, died from radiation exposure within three weeks.[41]:247–48

Fire containment

Fichier:Leonid Telyatnikov (1951-2004) decorated in UK.jpg
Firefighter Leonid Telyatnikov, being decorated for bravery

Shortly after the accident, firefighters arrived to try to extinguish the fires. First on the scene was a Chernobyl Power Station firefighter brigade under the command of Lieutenant Volodymyr Pravik, who died on 9 May 1986 of acute radiation sickness. They were not told how dangerously radioactive the smoke and the debris were, and may not even have known that the accident was anything more than a regular electrical fire: "We didn't know it was the reactor. No one had told us."[42]

Grigorii Khmel, the driver of one of the fire engines, later described what happened:

Modèle:Bquote

However, Anatoli Zakharov, a fireman stationed in Chernobyl since 1980, offers a different description:

Modèle:Bquote

Twenty years after the disaster, he said the firefighters from the Fire Station No. 2 were aware of the risks.

Modèle:Bquote

The immediate priority was to extinguish fires on the roof of the station and the area around the building containing Reactor No. 4 to protect No. 3 and keep its core cooling systems intact. The fires were extinguished by 5:00, but many firefighters received high doses of radiation. The fire inside reactor 4 continued to burn until 10 May 1986; it is possible that well over half of the graphite burned out.[19]:73

The fire was extinguished by a combined effort of helicopters dropping over 5,000 metric tons of sand, lead, clay, and neutron absorbing boron onto the burning reactor and injection of liquid nitrogen. The Ukrainian filmmaker Vladimir Shevchenko captured film footage of an Mi-8 helicopter as its main rotor collided with a nearby construction crane cable, causing the helicopter to fall near the damaged reactor building and killing its four-man crew.[43] It is now known that virtually none of the neutron absorbers reached the core.[44]

From eyewitness accounts of the firefighters involved before they died (as reported on the CBC television series Witness), one described his experience of the radiation as "tasting like metal", and feeling a sensation similar to that of pins and needles all over his face. (This is similar to the description given by Louis Slotin, a Manhattan Project physicist who died days after a fatal radiation overdose from a criticality accident.)[45]

The explosion and fire threw hot particles of the nuclear fuel and also far more dangerous fission products, radioactive isotopes such as caesium-137, iodine-131, strontium-90 and other radionuclides, into the air: the residents of the surrounding area observed the radioactive cloud on the night of the explosion.

Timeline
  • 1:26:03 – fire alarm activated
  • 1:28 – arrival of local firefighters, Pravik's guard
  • 1:35 – arrival of firefighters from Pripyat, Kibenok's guard
  • 1:40 – arrival of Telyatnikov
  • 2:10 – turbine hall roof fire extinguished
  • 2:30 – main reactor hall roof fires suppressed
  • 3:30 – arrival of Kiev firefighters[46]
  • 4:50 – fires mostly localized
  • 6:35 – all fires extinguished[47]

With the exception of the fire contained inside Reactor 4, which continued to burn for many days.[19]:73

Evacuation developments

The view of Chernobyl Nuclear Power Plant taken from the city of Pripyat

Fichier audio
Pripyat evacuation broadcast
noicon
Russian language announcement
Des difficultés à utiliser ces médias ?
Des difficultés à utiliser ces médias ?
Des difficultés à utiliser ces médias ?

The nearby city of Pripyat was not immediately evacuated after the incident. The townspeople went about their usual business, completely oblivious to what had just happened. However, within a few hours of the explosion, dozens of people fell ill. Later, they reported severe headaches and metallic tastes in their mouths, along with uncontrollable fits of coughing and vomiting.[48]

The general population of the Soviet Union was first informed of the disaster on 28 April, two days after the explosion, with a 20 second announcement in the TV news program Vremya.[49] At that time ABC released its report about the disaster.[50] During that time, all radio broadcasts run by the state were replaced with classical music, which was a common method of preparing the public for an announcement of a tragedy that had taken place. Scientist teams were armed and placed on alert as instructions were awaited.

Only after radiation levels set off alarms at the Forsmark Nuclear Power Plant in Sweden,[51] over one thousand kilometers from the Chernobyl Plant, did the Soviet Union admit that an accident had occurred. Nevertheless, authorities attempted to conceal the scale of the disaster. For example, after evacuating the city of Pripyat, the following warning message was read on the state TV:

« There has been an accident at the Chernobyl Nuclear Power Plant. One of the nuclear reactors was damaged. The effects of the accident are being remedied. Assistance has been provided for any affected people. An investigative commission has been set up. »

A state commission was set up the same day (26 April) and tasked with investigating the accident. It was headed by Valery Legasov, who arrived at Chernobyl in the evening of 26 April. By the time Legasov arrived, two people had already died and 52 were receiving medical attention in hospital. By the night of 26–27 April – more than 24 hours after the explosion – Legasov's committee had ample evidence that extremely high levels of radiation had caused a number of cases of radiation exposure. Based on the evidence at hand, Legasov's committee acknowledged the destruction of the reactor and ordered the evacuation of Pripyat.

The evacuation began at 14:00 on 27 April. An excerpt of the evacuation announcement was translated into English in the program Seconds From Disaster on the National Geographic Channel in 2004.[52] A translation of the rest of the audio follows.

« For the attention of the residents of Pripyat! The City Council informs you that due to the accident at Chernobyl Power Station in the city of Pripyat the radioactive conditions in the vicinity are deteriorating. The Communist Party, its officials and the armed forces are taking necessary steps to combat this. Nevertheless, with the view to keep people as safe and healthy as possible, the children being top priority, we need to temporarily evacuate the citizens in the nearest towns of Kiev Oblast. For these reasons, starting from April 27, 1986 2 pm each apartment block will be able to have a bus at its disposal, supervised by the police and the city officials. It is highly advisable to take your documents, some vital personal belongings and a certain amount of food, just in case, with you. The senior executives of public and industrial facilities of the city has decided on the list of employees needed to stay in Pripyat to maintain these facilities in a good working order. All the houses will be guarded by the police during the evacuation period. Comrades, leaving your residences temporarily please make sure you have turned off the lights, electrical equipment and water and shut the windows. Please keep calm and orderly in the process of this short-term evacuation. »

In order to expedite the evacuation, the residents were told to bring only what was necessary, as the authorities had said it would only last approximately three days. As a result, most of the residents left their personal belongings, which are still there today. An exclusion zone of 30 km (19 mi) remains in place today, although its shape has changed and its size has been expanded.

As the plant was run by authorities in Moscow, the government of Ukraine did not receive prompt information on the situation at the site, according to the former chairman of Presidium of Verkhovna Rada of Ukrainian SSR, Valentyna Shevchenko.[53] In her recollections she stated that she was at work when at 09:00 Vasyl Durdynets who performed duties of the Minister of Internal Affairs at the time (as the First Deputy Minister) called in with a report on the recent situation, adding at the end that there was a fire at the Chernobyl AES (AES – an abbreviation for a nuclear power plant), which was extinguished and everything was fine (see Fire containment). When Shevchenko asked "How are the people?", he replied that there was nothing to be concerned with: "some are celebrating a wedding, others are gardening, and others are fishing in the Pripyat River".[53]

On 25 April 2011 the President of Ukraine Viktor Yanukovych awarded Durdynets the "Distinguished Juror of Ukraine" as an advisor of the Ministry of Internal Affairs, a participant in the liquidation of consequences of Chernobyl disaster, and a general of Internal Service of Ukraine.[54] After the report Shevchenko called in to Volodymyr Shcherbytsky (Head of the Central Committee of CP(b)U, de facto – a head of state).[53] Shcherbytsky stated that he anticipated a delegation of the state commission headed by the deputy chairman of the Council of Ministers of USSR.[53]

Among the delegation's officials were academic Evgeny Velikhov, a leading nuclear specialist in the Soviet Union; a head of Hydro-Meteorologic Service of USSR Yuriy Izrael; a chief radiologist of the country Leonid Ilyin; and others. From the Boryspil International Airport the delegation drove to the power plant, realised the seriousness of the situation that night, and decided to evacuate the residents of Pripyat.[53] On 26 April 2011 Velikhov was awarded Order of Merit of the III degree from the President of Ukraine Viktor Yanukovych for his contributions in the liquidation of consequences of the Chernobyl disaster.[55]

By the morning of 27 April, buses arrived in Pripyat to start the evacuation at 11:00. By 15:00, 53,000 people were evacuated to various villages of Kiev region.[53] At first it was decided to evacuate the population temporarily for three days, however later it was postponed permanently. Many took only the most necessary items and their documents leaving all the rest behind.[53] The next day, talks began for evacuating people from the 10 km zone.

Shevchenko was the first of the Ukrainian state top officials to arrive at the disaster site early on 28 April. There she spoke with members of medical staff and people, who were calm and hopeful that they could soon return to their homes. Shevchenko returned home near midnight, stopping at a radiological checkpoint in Vilcha, one of the first that were set up soon after the accident.[53]

There was a notification from Moscow that there was no reason to postpone the 1 May celebrations (including the annual parade), but on 30 April a meeting of the Political bureau of the Central Committee of CP(b)U took place to discuss the plan for the upcoming celebration. Scientists were reporting that the radiological background in Kiev city was normal. At the meeting, which was finished at 18:00, it was decided to shorten celebrations from the regular 3.5–4 to under 2 hours.[53]

Steam explosion risk

Fichier:Chernobyl lava flow.jpg
Chernobyl corium lava flows formed by fuel-containing mass in the basement of the plant[56]

Two floors of bubbler pools beneath the reactor served as a large water reservoir for the emergency cooling pumps and as a pressure suppression system capable of condensing steam in case of a small broken steam pipe; the third floor above them, below the reactor, served as a steam tunnel. The steam released by a broken pipe was supposed to enter the steam tunnel and be led into the pools to bubble through a layer of water. After the disaster, the pools and the basement were flooded because of ruptured cooling water pipes and accumulated firefighting water, and constituted a serious steam explosion risk.

The smoldering graphite, fuel and other material above, at more than 1200 °C,[57] started to burn through the reactor floor and mixed with molten concrete from the reactor lining, creating corium, a radioactive semi-liquid material comparable to lava.[56][58] If this mixture had melted through the floor into the pool of water, it was feared it could have created a serious steam explosion that would have ejected more radioactive material from the reactor. It became necessary to drain the pool.[59]

The bubbler pool could be drained by opening its sluice gates. Volunteers in diving suits entered the radioactive water and managed to open the gates. These were the engineers Alexei Ananenko (who knew where the valves were) and Valeri Bezpalov, accompanied by a third man, Boris Baranov, who provided them with light from a lamp, though this lamp failed, leaving them to find the valves by feeling their way along a pipe. All of them returned to the surface and according to Ananenko, their colleagues jumped in joy when they heard they had managed to open the valves.

Despite their apparently good condition after completing the work, all three suffered from radiation sickness and later died.[60] Some sources claim incorrectly that they died in the plant.[61] It is likely that intense alpha radiation hydrolyzed the water, generating a low-pH hydrogen peroxide (H2O2) solution akin to an oxidizing acid.[62] Conversion of bubbler pool water to H2O2 is confirmed by the presence in the Chernobyl lavas of studtite and metastudtite,[63][64] the only minerals that contain peroxide.[65]

Fire brigade pumps were then used to drain the basement. The operation was not completed until 8 May, after 20,000 metric tons of highly radioactive water were pumped out.

With the bubbler pool gone, a meltdown was less likely to produce a powerful steam explosion. To do so, the molten core would now have to reach the water table below the reactor. To reduce the likelihood of this, it was decided to freeze the earth beneath the reactor, which would also stabilize the foundations. Using oil drilling equipment, the injection of liquid nitrogen began on 4 May. It was estimated that 25 metric tons of liquid nitrogen per day would be required to keep the soil frozen at −100 °C.[19]:59 This idea[66] was soon scrapped and the bottom room where the cooling system would have been installed was filled with concrete.

Debris removal

Fichier:Cherbnobyl-powerplant-today.jpg
Chernobyl power plant in 2003 with the sarcophagus containment structure

The worst of the radioactive debris was collected inside what was left of the reactor, much of it shoveled in by liquidators wearing heavy protective gear (dubbed "bio-robots" by the military); these workers could only spend a maximum of 40 seconds at a time working on the rooftops of the surrounding buildings because of the extremely high doses of radiation given off by the blocks of graphite and other debris. The reactor itself was covered with bags of sand, lead and boric acid dropped from helicopters: some 5,000 metric tons of material were dropped during the week that followed the accident.

At the time there was still fear that the reactor could re-enter a self-sustaining nuclear chain-reaction and explode again, and a new containment structure was planned to prevent rain entering and triggering such an explosion, and to prevent further release of radioactive material. This was the largest civil engineering task in history, involving a quarter of a million construction workers who all reached their official lifetime limits of radiation.[44] By December 1986, a large concrete sarcophagus had been erected to seal off the reactor and its contents.[67] A unique "clean up" medal was given to the workers.[68]

Many of the vehicles used by the "liquidators" remain parked in a field in the Chernobyl area.[69]

During the construction of the sarcophagus, a scientific team re-entered the reactor as part of an investigation dubbed "Complex Expedition", to locate and contain nuclear fuel in a way that could not lead to another explosion. These scientists manually collected cold fuel rods, but great heat was still emanating from the core. Rates of radiation in different parts of the building were monitored by drilling holes into the reactor and inserting long metal detector tubes. The scientists were exposed to high levels of radiation and radioactive dust.[44]

After six months of investigation, in December 1986, they discovered with the help of a remote camera an intensely radioactive mass in the basement of Unit Four, more than two metres wide and weighing hundreds of tons, which they called "the elephant's foot" for its wrinkled appearance. The mass was composed of sand, glass and a large amount of nuclear fuel that had escaped from the reactor. The concrete beneath the reactor was steaming hot, and was breached by solidified lava and spectacular unknown crystalline forms termed chernobylite. It was concluded that there was no further risk of explosion.[44]

Causes

Operator error

There were two official explanations of the accident: the first, later acknowledged to be erroneous, was published in August 1986 and effectively placed the blame on the power plant operators. To investigate the causes of the accident the IAEA created a group known as the International Nuclear Safety Advisory Group (INSAG), which in its report of 1986, INSAG-1, on the whole also supported this view, based on the data provided by the Soviets and the oral statements of specialists.[70] In this view, the catastrophic accident was caused by gross violations of operating rules and regulations. "During preparation and testing of the turbine generator under run-down conditions using the auxiliary load, personnel disconnected a series of technical protection systems and breached the most important operational safety provisions for conducting a technical exercise."[71]:311

The operator error was probably due to their lack of knowledge of nuclear reactor physics and engineering, as well as lack of experience and training. According to these allegations, at the time of the accident the reactor was being operated with many key safety systems turned off, most notably the Emergency Core Cooling System (ECCS), LAR (Local Automatic control system), and AZ (emergency power reduction system). Personnel had an insufficiently detailed understanding of technical procedures involved with the nuclear reactor, and knowingly ignored regulations to speed test completion.[71]

« The developers of the reactor plant considered this combination of events to be impossible and therefore did not allow for the creation of emergency protection systems capable of preventing the combination of events that led to the crisis, namely the intentional disabling of emergency protection equipment plus the violation of operating procedures. Thus the primary cause of the accident was the extremely improbable combination of rule infringement plus the operational routine allowed by the power station staff.[71]:312 »

In this analysis of the causes of the accident, deficiencies in the reactor design and in the operating regulations that made the accident possible were set aside and mentioned only casually. Serious critical observations covered only general questions and did not address the specific reasons for the accident. The following general picture arose from these observations. Several procedural irregularities also helped to make the accident possible. One was insufficient communication between the safety officers and the operators in charge of the experiment being run that night.

The reactor operators disabled safety systems down to the generators, which the test was really about. The main process computer, SKALA, was running in such a way that the main control computer could not shut down the reactor or even reduce power. Normally the reactor would have started to insert all of the control rods. The computer would have also started the "Emergency Core Protection System" that introduces 24 control rods into the active zone within 2.5 seconds, which is still slow by 1986 standards. All control was transferred from the process computer to the human operators.

This view is reflected in numerous publications and also artistic works on the theme of the Chernobyl accident that appeared immediately after the accident,[19] and for a long time remained dominant in the public consciousness and in popular publications.

Operating instructions and design deficiencies found

Reactor hall No. 1, Chernobyl nuclear power plant, Ukraine

In 1991 a Commission of the USSR State Committee for the Supervision of Safety in Industry and Nuclear Power has reassessed the causes and circumstances of the Chernobyl accident and came to new insights and conclusions. Based on it, in 1992 the IAEA Nuclear Safety Advisory Group (INSAG) published an additional report, INSAG-7,[23] which reviewed "that part of the INSAG-1 report in which primary attention is given to the reasons for the accident". and included the USSR State Commission report as Appendix I.[23]

In this INSAG report, most of the earlier accusations against staff for breach of regulations were acknowledged to be either erroneous, based on incorrect information obtained in August 1986, or less relevant. This report reflected another view of the main reasons for the accident, presented in Appendix I. According to this account, the operators' actions in turning off the Emergency Core Cooling System, interfering with the settings on the protection equipment, and blocking the level and pressure in the separator drum did not contribute to the original cause of the accident and its magnitude, although they may have been a breach of regulations. Turning off the emergency system designed to prevent the two turbine generators from stopping was not a violation of regulations.[23]

Human factors contributed to the conditions that led to the disaster. These included operating the reactor at a low power level – less than 700 MW – a level documented in the run-down test program, and operating with a small operational reactivity margin (ORM). The 1986 assertions of Soviet experts notwithstanding, regulations did not prohibit operating the reactor at this low power level.[23]:18

However, regulations did forbid operating the reactor with a small margin of reactivity. Yet "post-accident studies have shown that the way in which the real role of the ORM is reflected in the Operating Procedures and design documentation for the RBMK-1000 is extremely contradictory," and furthermore, "ORM was not treated as an operational safety limit, violation of which could lead to an accident."[23]:34–25

According to the INSAG-7 Report, the chief reasons for the accident lie in the peculiarities of physics and in the construction of the reactor. There are two such reasons:[23]:18

  • The reactor had a dangerously large positive void coefficient. The void coefficient is a measurement of how a reactor responds to increased steam formation in the water coolant. Most other reactor designs have a negative coefficient, i.e. the nuclear reaction rate slows when steam bubbles form in the coolant, since as the vapor phase in the reactor increases, fewer neutrons are slowed down. Faster neutrons are less likely to split uranium atoms, so the reactor produces less power (a negative feed-back). Chernobyl's RBMK reactor, however, used solid graphite as a neutron moderator to slow down the neutrons, and the water in it, on the contrary, acts like a harmful neutron absorber. Thus neutrons are slowed down even if steam bubbles form in the water. Furthermore, because steam absorbs neutrons much less readily than water, increasing the intensity of vaporization means that more neutrons are able to split uranium atoms, increasing the reactor's power output. This makes the RBMK design very unstable at low power levels, and prone to suddenly increasing energy production to a dangerous level. This behavior is counter-intuitive, and this property of the reactor was unknown to the crew.
  • A more significant flaw was in the design of the control rods that are inserted into the reactor to slow down the reaction. In the RBMK reactor design, the lower part of each control rod was made of graphite and was 1.3 meters shorter than necessary, and in the space beneath the rods were hollow channels filled with water. The upper part of the rod, the truly functional part that absorbs the neutrons and thereby halts the reaction, was made of boron carbide. With this design, when the rods are inserted into the reactor from the uppermost position, the graphite parts initially displace some water (which absorbs neutrons, as mentioned above), effectively causing less neutrons to be absorbed initially. Thus for the first few seconds of control rod activation, reactor power output is increased, rather than reduced as desired. This behavior is counter-intuitive and was not known to the reactor operators.
  • Other deficiencies besides these were noted in the RBMK-1000 reactor design, as were its non-compliance with accepted standards and with the requirements of nuclear reactor safety.

Both views were heavily lobbied by different groups, including the reactor's designers, power plant personnel, and the Soviet and Ukrainian governments. According to the IAEA's 1986 analysis, the main cause of the accident was the operators' actions. But according to the IAEA's 1993 revised analysis the main cause was the reactor's design.[72] One reason there were such contradictory viewpoints and so much debate about the causes of the Chernobyl accident was that the primary data covering the disaster, as registered by the instruments and sensors, were not completely published in the official sources.

Once again, the human factor had to be considered as a major element in causing the accident. INSAG notes that both the operating regulations and staff handled the disabling of the reactor protection easily enough: witness the length of time for which the ECCS was out of service while the reactor was operated at half power. INSAG's view is that it was the operating crew's deviation from the test program that was mostly to blame. "Most reprehensibly, unapproved changes in the test procedure were deliberately made on the spot, although the plant was known to be in a very different condition from that intended for the test."[23]:24

As in the previously released report INSAG-1, close attention is paid in report INSAG-7 to the inadequate (at the moment of the accident) "culture of safety" at all levels. Deficiency in the safety culture was inherent not only at the operational stage but also, and to no lesser extent, during activities at other stages in the lifetime of nuclear power plants (including design, engineering, construction, manufacture and regulation). The poor quality of operating procedures and instructions, and their conflicting character, put a heavy burden on the operating crew, including the Chief Engineer. "The accident can be said to have flowed from a deficient safety culture, not only at the Chernobyl plant, but throughout the Soviet design, operating and regulatory organizations for nuclear power that existed at that time."[23]:24

Effects

Erreur : La version française équivalente de {{Main}} est {{Article détaillé}}.

International spread of radioactive substances

Piglet with Dipygus on exhibit at the Ukrainian National Chornobyl Museum. Mutations in both humans and other animals increased following the disaster. On farms in Narodychi Raion of Ukraine, for instance, in the first four years of the disaster nearly 350 animals were born with gross deformities such as missing or extra limbs, missing eyes, heads or ribs, or deformed skulls; in comparison, only three abnormal births had been registered in the five years prior.[73][74][75][76][77][78] Despite these claims, the World Health Organization states, "children conceived before or after their father's exposure showed no statistically significant differences in mutation frequencies."[79]

Four hundred times more radioactive material was released than had been by the atomic bombing of Hiroshima. The disaster released 1/100 to 1/1000 of the total amount of radioactivity released by nuclear weapons testing during the 1950s and 1960s.[80] Approximately 100,000 km² of land was significantly contaminated with fallout, the worst hit regions being in Belarus, Ukraine and Russia.[81] Slighter levels of contamination were detected over all of Europe except for the Iberian Peninsula.[16][82][83]

The initial evidence that a major release of radioactive material was affecting other countries came not from Soviet sources, but from Sweden, where on the morning of 28 April[84] workers at the Forsmark Nuclear Power Plant(approximately 1 100 km (680 mi) from the Chernobyl site) were found to have radioactive particles on their clothes.[85]

It was Sweden's search for the source of radioactivity, after they had determined there was no leak at the Swedish plant, that at noon on 28 April led to the first hint of a serious nuclear problem in the western Soviet Union. Hence the evacuation of Pripyat on 27 April 36 hours after the initial explosions, was silently completed before the disaster became known outside the Soviet Union. The rise in radiation levels had at that time already been measured in Finland, but a civil service strike delayed the response and publication.[86]

Areas of Europe contaminated with 137Cs[87]
Country 37–185 k Bq/m2 185–555 kBq/m2 555–1480 kBq/m2 >1480 kBq/m2
km2 % of country km2 % of country km2 % of country km2 % of country
Belarus 29,900 14.4 10,200 4.9 4,200 2.0 2,200 1.1
Ukraine 37,200 6.2 3,200 0.53 900 0.15 600 0.1
Russia 49,800 0.29 5,700 0.03 2,100 0.01 300 0.002
Sweden 12,000 2.7
Finland 11,500 3.4
Austria 8,600 10.3
Norway 5,200 1.3
Bulgaria 4,800 4.3
Switzerland 1,300 3.1
Greece 1,200 0.91
Slovenia 300 1.5
Italy 300 0.1
Moldova 60 0.2
Totals 162,160 km2 19,100 km2 7,200 km2 3,100 km2

Contamination from the Chernobyl accident was scattered irregularly depending on weather conditions, much of it deposited on mountainous regions such as the Alps, Wales and the Scottish Highlands, where adibatic cooling caused rainfall. The resulting patches of contamination could be highly localised, and water-flows across the ground contributed further to large variations in radioactivity over small areas. Sweden and Norway also received heavy fallout when the contaminated air collided with a cold front, bringing rain.[88]:43–44, 78

Rain was purposely seeded over 10,000 km2 of the Belorussian SSR by the Soviet air force to remove radioactive particles from clouds heading toward highly populated areas. Heavy, black-coloured rain fell on the city of Gomel.[89] Reports from Soviet and Western scientists indicate that Belarus received about 60% of the contamination that fell on the former Soviet Union. However, the 2006 TORCH report stated that half of the volatile particles had landed outside Ukraine, Belarus, and Russia. A large area in Russia south of Bryansk was also contaminated, as were parts of northwestern Ukraine. Studies in surrounding countries indicate that over one million people could have been affected by radiation.[90]

Recently published data from a long-term monitoring program (The Korma Report)[91] shows a decrease in internal radiation exposure of the inhabitants of a region in Belarus close to Gomel. Resettlement may even be possible in prohibited areas provided that people comply with appropriate dietary rules.

In Western Europe, precautionary measures taken in response to the radiation included seemingly arbitrary regulations banning the importation of certain foods but not others. In France some officials stated that the Chernobyl accident had no adverse effects.[92] Official figures in southern Bavaria in Germany indicated that some wild plant species contained substantial levels of caesium, which were believed to have been passed onto them by wild boars, a significant number of which had already contained radioactive particles above the allowed level, consuming them.[pas clair][93]

Radioactive release

Contributions of the various isotopes to the (atmospheric) dose in the contaminated area soon after the accident

Like many other releases of radioactivity into the environment, the Chernobyl release was controlled by the physical and chemical properties of the radioactive elements in the core. While the general population often perceives plutonium as a particularly dangerous nuclear fuel, its effects are almost eclipsed by those of its fission products. Particularly dangerous are highly radioactive compounds that accumulate in the food chain, such as some isotopes of iodine and strontium.

Two reports on the release of radioisotopes from the site were made available, one by the OSTI and a more detailed report by the OECD, both in 1998.[94][95] At different times after the accident, different isotopes were responsible for the majority of the external dose. The dose that was calculated is that received from external gamma irradiation for a person standing in the open. The dose to a person in a shelter or the internal dose is harder to estimate.

The release of radioisotopes from the nuclear fuel was largely controlled by their boiling points, and the majority of the radioactivity present in the core was retained in the reactor.

  • All of the noble gases, including krypton and xenon, contained within the reactor were released immediately into the atmosphere by the first steam explosion.
  • 55% of the radioactive iodine in the reactor, containing about 1760 PBq or 400 kg of I-131, was released, as a mixture of vapor, solid particles, and organic iodine compounds.
  • Caesium (85 PBq Cs-137[96]) and tellurium were released in aerosol form.
  • An early estimate for fuel material released to the environment was 3 ± 1.5%; this was later revised to 3.5 ± 0.5%. This corresponds to the atmospheric emission of 6 t of fragmented fuel.[95]
  • Total atmospheric release is estimated at 5200 PBq.[97]

Two sizes of particles were released: small particles of 0.3 to 1.5 micrometers (aerodynamic diameter) and large particles of 10 micrometers. The large particles contained about 80% to 90% of the released nonvolatile radioisotopes zirconium-95, niobium-95, lanthanum-140, cerium-144 and the transuranic elements, including neptunium, plutonium and the minor actinides, embedded in a uranium oxide matrix.

Health of plant workers and local people

Fichier:Chernobyl Museum Kiev.jpg
Children of the liquidators as photographed by the Chernobyl Museum in Kiev, Ukraine
Fichier:Chernobil Avaria.jpg
Medal for valour and compassion.

In the aftermath of the accident, 237 people suffered from acute radiation sickness (ARS), of whom 31 died within the first three months.[13][98] Most of the victims were fire and rescue workers trying to bring the accident under control, who were not fully aware of how dangerous the exposure to radiation in the smoke was. Whereas, in the World Health Organization's 2006 report of the Chernobyl Forum expert group on the 237 emergency workers who were diagnosed with ARS, ARS was identified as the cause of death for 28 of these people within the first few months after the disaster.

No further ARS-related deaths were identified in the general population affected by the disaster. Of the 72,000 Russian Emergency Workers being studied, 216 non-cancer deaths are attributed to the disaster, between 1991 and 1998.[réf. nécessaire] Of all 66,000 Belarusian emergency workers, by the mid-1990s only 150 (roughly 0.2%) were reported by their government as having died. In contrast, 5,722 casualties were reported among Ukrainian clean-up workers up to the year 1995, by the National Committee for Radiation Protection of the Ukrainian Population.[81]

The latency period for solid cancers caused by excess radiation exposure is 10 or more years; thus at the time of the WHO report being undertaken, the rates of solid cancer deaths were no greater than the general population.[réf. nécessaire]No solid cancers by 2006?[Information douteuse] Some 135,000 people were evacuated from the area, including 50,000 from Pripyat.[réf. nécessaire]

Residual radioactivity in the environment

Rivers, lakes and reservoirs

Earth Observing-1 image of the reactor and surrounding area in April 2009

The Chernobyl nuclear power plant is located next to the Pripyat River, which feeds into the Dnieper reservoir system, one of the largest surface water systems in Europe, which at the time supplied water to Kiev's 2.4 million residents, and was still in spring flood when the accident occurred.[99]:60 The radioactive contamination of aquatic systems therefore became a major problem in the immediate aftermath of the accident.[100] In the most affected areas of Ukraine, levels of radioactivity (particularly from radionuclides 131I, 137Cs and 90Sr) in drinking water caused concern during the weeks and months after the accident,[100] though officially it was stated that all contaminants had settled to the bottom "in an insoluble phase" and would not dissolve for 800–1,000 years.[99]:64 Guidelines for levels of radioiodine in drinking water were temporarily raised to 3,700 Bq/L, allowing most water to be reported as safe,[100] and a year after the accident it was announced that even the water of the Chernobyl plant's cooling pond was within acceptable norms. Despite this, two months after the disaster the Kiev water supply was abruptly switched from the Dnieper to the Desna River.[99]:64–5 Meanwhile, massive silt traps were constructed, along with an enormous 30m-deep underground barrier to prevent groundwater from the destroyed reactor entering the Pripyat River.[99]:65–7

Bio-accumulation of radioactivity in fish[101] resulted in concentrations (both in western Europe and in the former Soviet Union) that in many cases were significantly above guideline maximum levels for consumption.[100] Guideline maximum levels for radiocaesium in fish vary from country to country but are approximately 1,000 Bq/kg in the European Union.[102] In the Kiev Reservoir in Ukraine, concentrations in fish were several thousand Bq/kg during the years after the accident.[101]

In small "closed" lakes in Belarus and the Bryansk region of Russia, concentrations in a number of fish species varied from 100 to 60,000 Bq/kg during the period 1990–92.[103] The contamination of fish caused short-term concern in parts of the UK and Germany and in the long term (years rather than months) in the affected areas of Ukraine, Belarus, and Russia as well as in parts of Scandinavia.[100]

Groundwater

Map of radiation levels in 1996 around Chernobyl

Groundwater was not badly affected by the Chernobyl accident since radionuclides with short half-lives decayed away long before they could affect groundwater supplies, and longer-lived radionuclides such as radiocaesium and radiostrontium were adsorbed to surface soils before they could transfer to groundwater.[104] However, significant transfers of radionuclides to groundwater have occurred from waste disposal sites in the 30 km (19 mi) exclusion zone around Chernobyl. Although there is a potential for transfer of radionuclides from these disposal sites off-site (i.e. out of the 30 km (19 mi) exclusion zone), the IAEA Chernobyl Report[104] argues that this is not significant in comparison to current levels of washout of surface-deposited radioactivity.

Flora and fauna

After the disaster, four square kilometers of pine forest directly downwind of the reactor turned reddish-brown and died, earning the name of the "Red Forest".[105]

After the disaster, four square kilometers of pine forest directly downwind of the reactor turned reddish-brown and died, earning the name of the "Red Forest".[105] Some animals in the worst-hit areas also died or stopped reproducing. Most domestic animals were removed from the exclusion zone, but horses left on an island in the Pripyat River 6 km (4 mi) from the power plant died when their thyroid glands were destroyed by radiation doses of 150–200 Sv.[106] Some cattle on the same island died and those that survived were stunted because of thyroid damage. The next generation appeared to be normal.[106]

A robot sent into the reactor itself has returned with samples of black, melanin-rich radiotrophic fungi that are growing on the reactor's walls.[107]

Of the 440,350 wild boar killed in the 2010 hunting season in Germany, over 1,000 were found to be contaminated with levels of radiation above the permitted limit of 600 bequerels, due to residual radioactivity from Chernobyl.[108] Germany has "banned wild game meat because of contamination linked to radioactive mushrooms".[109]

The Norwegian Agricultural Authority reported that in 2009 a total of 18,000 livestock in Norway needed to be given uncontaminated feed for a period of time before slaughter in order to ensure that their meat was safe for human consumption. This was due to residual radioactivity from Chernobyl in the plants they graze on in the wild during the summer. The after-effects of Chernobyl were expected to be seen for a further 100 years, although the severity of the effects would decline over that period.[110] In Britain and Norway, as of 2011, "slaughter restrictions remain for sheep raised on pasture contaminated by radiation fallout".[109]

Human impact

Erreur : La version française équivalente de {{Main}} est {{Article détaillé}}.

Demonstration on Chernobyl day near WHO in Geneva

The Chernobyl Forum first met on 3 February 2003 for a three day meeting. It consisted of the International Atomic Energy Agency (IAEA), other United Nations organizations (FAO, UN-OCHA, UNDP, UNEP, UNSCEAR, WHO, and the World Bank), and the governments of Belarus, Russia, and Ukraine. A second meeting was held on 10–11 March 2004, and a third on 18–20 April 2005. The aim of the Forum was to "scientifically clarify the radiological environmental and health consequences of the Chernobyl accident, to provide advice on and to contribute to a scientifically sound remediation and health care programmes, and to consider the necessity of, and opportunities for continued research/learning lessons."[111]

Thyroid cancer

Thyroid cancer incidence in children and adolescents from Belarus after the Chernobyl accident
Yellow: Adults (19–34)
Blue: Adolescents (15–18)
Red: Children (0–14)

A report was published by Chernobyl Forum in 2005 that revealed thyroid cancer among children to be one of the main health impacts from the Chornobyl accident. In that publication more than 4000 cases were reported, and that there was no evidence of an increase in solid cancers or leukemia. It said that there was an increase in psychological problems among the affected population. The report says it is impossible to reliably predict the number of fatal cancers arising from the incident as small differences in assumptions can result in large differences in the estimated health costs. The report says it represents the consensus view of the eight UN organisations.[112]
On the death toll of the accident, the report states that twenty-eight emergency workers ("liquidators") died from acute radiation syndrome including beta burns and 15 patients died from thyroid cancer in the following years, and it roughly estimated that cancer deaths caused by Chernobyl may reach a total of about 4,000 among the 5 million persons residing in the contaminated areas, the report projected cancer mortality "increases of less than one per cent" (~0.3%) on a time span of 80 years, cautioning that this estimate was "speculative" since at this time only a few tens of cancer deaths are linked to the Chernobyl disaster.[112]
According to UNSCEAR, up to the year 2005 more than 6000 cases of thyroid cancer were reported in children and adolescents exposed at the time of the accident, a number that is expected to increase. They concluded that was no other evidence of major health impacts from the radiation exposure.[113]
Well-differentiated thyroid cancers are generally treatable,[114] and when treated the five-year survival rate of thyroid cancer is 96%, and 92% after 30 years.[115] UNSCEAR had reported 15 deaths from thyroid cancer in 2011.[116] The International Atomic Energy Agency (IAEA) also states that there has been no increase in the rate of birth defects or abnormalities, or solid cancers (such as lung cancer) corroborating UNSCEAR's assessments.[117] UNSCEAR does raise the possibility of long term genetic defects, pointing to a doubling of radiation-induced minisatellite mutations among children born in 1994.[118] However, the risk of thyroid cancer associated with the Chernobyl accident is still high according to published studies.[119][120]

Other health disorders

Fred Mettler, a radiation expert at the University of New Mexico, puts the number of worldwide cancer deaths outside the highly contaminated zone at "perhaps" 5000, for a total of 9000 Chernobyl-associated fatal cancers, saying "the number is small (representing a few percent) relative to the normal spontaneous risk of cancer, but the numbers are large in absolute terms".[121] The same report outlined studies based in data found in the Russian Registry from 1991 to 1998 that suggested that "of 61,000 Russian workers exposed to an average dose of 107 mSv about 5% of all fatalities that occurred may have been due to radiation exposure."[112]

The report went into depth about the risks to mental health of exaggerated fears about the effects of radiation.[112] According to the IAEA the "designation of the affected population as "victims" rather than "survivors" has led them to perceive themselves as helpless, weak and lacking control over their future". The IAEA says that this may have led to behaviour that has caused further health effects.[122]

Fred Mettler commented that 20 years later "The population remains largely unsure of what the effects of radiation actually are and retain a sense of foreboding. A number of adolescents and young adults who have been exposed to modest or small amounts of radiation feel that they are somehow fatally flawed and there is no downside to using illicit drugs or having unprotected sex. To reverse such attitudes and behaviors will likely take years although some youth groups have begun programs that have promise."[123] In addition, disadvantaged children around Chernobyl suffer from health problems that are attributable not only to the Chernobyl accident, but also to the poor state of post-Soviet health systems.[117]

The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), part of the Chernobyl Forum, have produced their own assessments of the radiation effects.[124] UNSCEAR was set up as a collaboration between various United Nation bodies, including the World Health Organisation, after the atomic bomb attacks on Hiroshima and Nagasaki, to assess the long-term effects of radiation on human health.[125]

Deaths due to radiation exposure

The number potential deaths arising from the Chernobyl disaster is heavily debated. The WHO's prediction of 4,000 future cancer deaths in surrounding countries[126] is based on the Linear no-threshold model (LNT), which assumes that the damage inflicted by radiation at low doses is directly proportional to the dose.[127] Radiation epidemiologist Roy Shore contends that estimating health effects in a population from the LNT model "is not wise because of the uncertainties".[128]

Radiation warning sign in Pripyat

According to the Union of Concerned Scientists the number of excess cancer deaths worldwide (including all contaminated areas) is approximately 27,000 based on the same LNT.[129]

Another study critical of the Chernobyl Forum report was commissioned by Greenpeace, which asserts that "the most recently published figures indicate that in Belarus, Russia and Ukraine alone the accident could have resulted in an estimated 200,000 additional deaths in the period between 1990 and 2004."[130] The Scientific Secretary of the Chernobyl Forum criticized the report's exclusive reliance on non-peer reviewed locally produced studies (in fact, most of the study's sources are from peer-reviewed journals, including many Western medical journals, or from proceedings of scientific conferences[130]), while Gregory Härtl (spokesman for the WHO) suggested that the conclusions were motivated by ideology.[131]

The German affiliate of the International Physicians for the Prevention of Nuclear War (IPPNW) argued that more than 10,000 people are today affected by thyroid cancer and 50,000 cases are expected in the future.[132]

Chernobyl: Consequences of the Catastrophe for People and the Environment is an English translation of the 2007 Russian publication Chernobyl. It was published in 2009 by the New York Academy of Sciences in their Annals of the New York Academy of Sciences. It presents an analysis of scientific literature and concludes that medical records between 1986, the year of the accident, and 2004 reflect 985,000 premature deaths as a result of the radioactivity released.[133]

The authors suggest that most of the deaths were in Russia, Belarus and Ukraine, though others occurred worldwide throughout the many countries that were struck by radioactive fallout from Chernobyl. The literature analysis draws on over 1,000 published titles and over 5,000 internet and printed publications discussing the consequences of the Chernobyl disaster. The authors contend that those publications and papers were written by leading Eastern European authorities and have largely been downplayed or ignored by the IAEA and UNSCEAR.[133] This estimate has however been criticized as exaggerated, lacking a proper scientific base.[134]

Other conditions

According to Kenneth Mossman, a Professor of Health Physics and member of the U.S. Nuclear Regulatory Commission advisory committee,[135] the "LNT philosophy is overly conservative, and low-level radiation may be less dangerous than commonly believed".[136] Yoshihisa Matsumoto, a radiation biologist at the Tokyo Institute of Technology, cites laboratory experiments on animals to suggest there must be a threshold dose below which DNA repair mechanisms can completely repair any radiation damage.[128] Mossman suggests that the proponents of the current model believe that being conservative is justified due to the uncertainties surrounding low level doses and it is better to have a "prudent public health policy".[135]

Another significant issue is establishing consistent data on which to base the analysis of the impact of the Chernobyl accident. Since 1991 large social and political changes have occurred within the affected regions and these changes have had significant impact on the administration of health care, on socio-economic stability, and the manner in which statistical data is collected.[137] Ronald Chesser, a radiation biologist at Texas Tech University, says that "the subsequent Soviet collapse, scarce funding, imprecise dosimetry, and difficulties tracking people over the years have limited the number of studies and their reliability."[128]

Economic and political consequences

It is difficult to establish the total economic cost of the disaster. According to Mikhail Gorbachev, the Soviet Union spent 18 billion rubles (the equivalent of US$18 billion at that time) on containment and decontamination, virtually bankrupting itself.[2] In Belarus the total cost over 30 years is estimated at US$235 billion (in 2005 dollars).[117] On-going costs are well known; in their 2003–2005 report, The Chernobyl Forum stated that between 5% and 7% of government spending in Ukraine still related to Chernobyl, while in Belarus over $13 billion is thought to have been spent between 1991 and 2003, with 22% of national budget having been Chernobyl-related in 1991, falling to 6% by 2002.[117] Much of the current cost relates to the payment of Chernobyl-related social benefits to some 7 million people across the 3 countries.[117]

A significant economic impact at the time was the removal of 784 320 ha (1 938 096,9242592 acre) of agricultural land and 694 200 ha (1 715 405,554902 acre) of forest from production. While much of this has been returned to use, agricultural production costs have risen due to the need for special cultivation techniques, fertilizers and additives.[117]

Politically, the accident gave great significance to the new Soviet policy of glasnost,[138][139]:196–7 and helped forge closer Soviet-US relations at the end of the Cold War, through bioscientific cooperation.[140]:44–48 But the disaster also became a key factor in the Union's eventual 1991 dissolution, and a major influence in shaping the new Eastern Europe.[140]:20–21

Aftermath

Following the accident, questions arose about the future of the plant and its eventual fate. All work on the unfinished reactors 5 and 6 was halted three years later. However, the trouble at the Chernobyl plant did not end with the disaster in reactor 4. The damaged reactor was sealed off and 200 cubic meters (260 yd3) of concrete was placed between the disaster site and the operational buildings.[réf. nécessaire] The Ukrainian government continued to let the three remaining reactors operate because of an energy shortage in the country.

Decommissioning

Erreur : La version française équivalente de {{Main}} est {{Article détaillé}}. In 1991, a fire broke out in the turbine building of reactor 2;[141] the authorities subsequently declared the reactor damaged beyond repair and had it taken offline. Reactor 1 was decommissioned in November 1996 as part of a deal between the Ukrainian government and international organizations such as the IAEA to end operations at the plant. On 15 December 2000, then-President Leonid Kuchma personally turned off Reactor 3 in an official ceremony, shutting down the entire site.[142]

Radioactive waste management

Containment of the reactor

The Chernobyl reactor is now enclosed in a large concrete sarcophagus, which was built quickly to allow continuing operation of the other reactors at the plant.[143]

A New Safe Confinement was to have been built by the end of 2005; however, it has suffered ongoing delays and Modèle:As of, when construction finally began, is expected to be completed in 2013. The structure is being built adjacent to the existing shelter and will be slid into place on rails. It is to be a metal arch 105 mètres ( Unité «  » inconnue du modèle {{Conversion}}.) high and spanning 257 mètres ( Unité «  » inconnue du modèle {{Conversion}}.), to cover both unit 4 and the hastily built 1986 structure. The Chernobyl Shelter Fund, set up in 1997, has received 810 million from international donors and projects to cover this project and previous work. It and the Nuclear Safety Account, also applied to Chernobyl decommissioning, are managed by the European Bank for Reconstruction and Development (EBRD).[réf. nécessaire]

By 2002, roughly 15,000 Ukrainian workers were still working within the Zone of Exclusion, maintaining the plant and performing other containment- and research-related tasks, often in dangerous conditions.[140]:2 A handful of Ukrainian scientists work inside the sarcophagus, but outsiders are rarely granted access. In 2006 an Australian 60 Minutes team led by reporter Richard Carleton and producer Stephen Rice were allowed to enter the sarcophagus for 15 minutes and film inside the control room.[144]

Radioactive materials and waste management

Modèle:As of, some fuel remained in the reactors at units 1 through 3, most of it in each unit's cooling pond, as well as some material in a small spent fuel interim storage facility pond (ISF-1).

In 1999 a contract was signed for construction of a radioactive waste management facility to store 25,000 used fuel assemblies from units 1–3 and other operational wastes, as well as material from decommissioning units 1–3 (which will be the first RBMK units decommissioned anywhere). The contract included a processing facility able to cut the RBMK fuel assemblies and to put the material in canisters, which were to be filled with inert gas and welded shut.

The canisters were to be transported to dry storage vaults, where the fuel containers would be enclosed for up to 100 years. This facility, treating 2500 fuel assemblies per year, would be the first of its kind for RBMK fuel. However, after a significant part of the storage structures had been built, technical deficiencies in the concept emerged, and the contract was terminated in 2007. The interim spent fuel storage facility (ISF-2) will now be completed by others by mid-2013.[réf. nécessaire]

Another contract has been let for a liquid radioactive waste treatment plant, to handle some 35,000 cubic meters of low- and intermediate-level liquid wastes at the site. This will need to be solidified and eventually buried along with solid wastes on site.[réf. nécessaire]

In January 2008, the Ukrainian government announced a 4-stage decommissioning plan that incorporates the above waste activities and progresses towards a cleared site .[90]

Lava-like fuel-containing materials (FCMs)

Erreur : La version française équivalente de {{Main}} est {{Article détaillé}}. According to official estimates, about 95% of the fuel in the reactor at the time of the accident (about 180 metric tons) remains inside the shelter, with a total radioactivity of nearly 18 million curies (670 PBq). The radioactive material consists of core fragments, dust, and lava-like "fuel containing materials" (FCM, also called "corium") that flowed through the wrecked reactor building before hardening into a ceramic form.

Three different lavas are present in the basement of the reactor building: black, brown, and a porous ceramic. They are silicate glasses with inclusions of other materials within them. The porous lava is brown lava that dropped into water and thus cooled rapidly.

Degradation of the lava

It is unclear how long the ceramic form will retard the release of radioactivity. From 1997 to 2002 a series of papers were published that suggested that the self-irradiation of the lava would convert all 1,200 metric tons into a submicrometer and mobile powder within a few weeks.[145] But it has been reported that the degradation of the lava is likely to be a slow and gradual process rather than sudden and rapid.[146] The same paper states that the loss of uranium from the wrecked reactor is only 10 kg (22,046226 lb) per year. This low rate of uranium leachingModèle:Disambiguation needed suggests that the lava is resisting its environment. The paper also states that when the shelter is improved, the leaching rate of the lava will decrease.

Some of the surfaces of the lava flows have started to show new uranium minerals such as Na4(UO2)(CO3)3 and uranyl carbonate. However, the level of radioactivity is such that during one hundred years the self irradiation of the lava (2 × 1016 α decays per gram and 2 to 5 × 105 Gy of β or γ) will fall short of the level of self irradiation required to greatly change the properties of glass (1018 α decays per gram and 108 to 109 Gy of β or γ). Also the rate of dissolution of the lava in water is very low (10−7 g-cm−2 day−1), suggesting that the lava is unlikely to dissolve in water.[146]

The Exclusion Zone

Entrance to the zone of alienation around Chernobyl

Erreur : La version française équivalente de {{Main}} est {{Article détaillé}}. An area extending 19 milles (30,577536 km) in all directions from the plant is known as the "zone of alienation." It is largely uninhabited, except for a few residents who have refused to leave. The area has largely reverted to forest. Even today, radiation levels are so high that the workers responsible for rebuilding the sarcophagus are only allowed to work five hours a day for one month before taking 15 days of rest. Ukrainian officials estimate the area will not be safe for human life again for another 20,000 years.[48]

In 2011, Ukraine opened up the sealed zone around the Chernobyl reactor to tourists who wish to learn more about the tragedy that occurred in 1986.[147][148]

Recovery projects

The Chernobyl Shelter Fund

Erreur : La version française équivalente de {{Main}} est {{Article détaillé}}. The Chernobyl Shelter Fund was established in 1997 at the Denver 23rd G8 summit to finance the Shelter Implementation Plan (SIP). The plan calls for transforming the site into an ecologically safe condition by means of stabilization of the sarcophagus followed by construction of a New Safe Confinement (NSC). While the original cost estimate for the SIP was US$768 million, the 2006 estimate was $1.2 billion. The SIP is being managed by a consortium of Bechtel, Battelle, and Electricité de France, and conceptual design for the NSC consists of a movable arch, constructed away from the shelter to avoid high radiation, to be slid over the sarcophagus. The NSC is expected to be completed in 2015,[149] and will be the largest movable structure ever built.

Dimensions:

  • Span: 270 m (886 pi)
  • Height: 100 m (330 pi)
  • Length: 150 m (492 pi)

The United Nations Development Programme

The United Nations Development Programme has launched in 2003 a specific project called the Chernobyl Recovery and Development Programme (CRDP) for the recovery of the affected areas.[150] The programme was initiated in February 2002 based on the recommendations in the report on Human Consequences of the Chernobyl Nuclear Accident. The main goal of the CRDP's activities is supporting the Government of Ukraine in mitigating long-term social, economic, and ecological consequences of the Chernobyl catastrophe. CRDP works in the four most Chernobyl-affected areas in Ukraine: Kyivska, Zhytomyrska, Chernihivska and Rivnenska.

The International Project on the Health Effects of the Chernobyl Accident

The International Project on the Health Effects of the Chernobyl Accident (IPEHCA) was created and received US $20 million, mainly from Japan, in hopes of discovering the main cause of health problems due to 131I radiation. These funds were divided between Ukraine, Belarus, and Russia, the three main affected countries, for further investigation of health effects. As there was significant corruption in former Soviet countries, most of the foreign aid was given to Russia, and no positive outcome from this money has been demonstrated.[réf. nécessaire]

Commemoration

Soviet badge awarded to liquidators

The Front Veranda (1986), a lithograph by Susan Dorothea White in the National Gallery of Australia, exemplifies worldwide awareness of the event. Heavy Water: A film for Chernobyl was released by Seventh Art in 2006 to commemorate the disaster through poetry and first-hand accounts.[151] The film secured the Cinequest Award as well as the Rhode Island "best score" award[152] along with a screening at Tate Modern.[153]

Chernobyl Way is an annual rally run on 26 April by the opposition in Belarus as a remembrance of the Chernobyl disaster.

Cultural impact

Erreur : La version française équivalente de {{Main}} est {{Article détaillé}}.

The Chernobyl accident attracted a great deal of interest. Because of the distrust that many people (both within and outside the USSR) had in the Soviet authorities, a great deal of debate about the situation at the site occurred in the first world during the early days of the event. Because of defective intelligence based on photographs taken from space, it was thought that unit number three had also suffered a dire accident.

Journalists mistrusted many professionals (such as the spokesman from the UK NRPB), and in turn encouraged the public to mistrust them.[154]

In Italy, the Chernobyl accident was reflected in the outcome of the 1987 referendum. As a result of that referendum, Italy began phasing out its nuclear power plants in 1988, a decision that was effectively reversed in 2008. A referendum in 2011 reiterated Italians' strong objections to nuclear power, thus abrogating the government's decision of 2008.

See also

Notes

  1. "No one believed the first newspaper reports, which patently understated the scale of the catastrophe and often contradicted one another. The confidence of readers was re-established only after the press was allowed to examine the events in detail without the original censorship restrictions. The policy of openness (glasnost) and 'uncompromising criticism' of outmoded arrangements had been proclaimed back at the 27th Congress (of KPSS), but it was only in the tragic days following the Chernobyl disaster that glasnost began to change from an official slogan into an everyday practice. The truth about Chernobyl that eventually hit the newspapers opened the way to a more truthful examination of other social problems. More and more articles were written about drug abuse, crime, corruption and the mistakes of leaders of various ranks. A wave of 'bad news' swept over the readers in 1986–87, shaking the consciousness of society. Many were horrified to find out about the numerous calamities of which they had previously had no idea. It often seemed to people that there were many more outrages in the epoch of perestroika than before although, in fact, they had simply not been informed about them previously." -Kagarlitsky pp. 333–334
  2. "The mere fact that the operators were carrying out an experiment that had not been approved by higher officials indicates that something was wrong with the chain of command. The State Committee on Safety in the Atomic Power Industry is permanently represented at the Chernobyl station. Yet the engineers and experts in that office were not informed about the program. In part, the tragedy was the product of administrative anarchy or the attempt to keep everything secret." Medvedev, Z., pp. 18–20

References

  1. Richard Black, « ''Fukushima: As Bad as Chernobyl?'' », BBC, (consulté le )
  2. a et b Gorbachev, Mikhail (1996), interview in Johnson, Thomas, The Battle of Chernobyl, [film], Discovery Channel, retrieved 30 October 2012.
  3. « Frequently Asked Chernobyl Questions », International Atomic Energy Agency – Division of Public Information, (consulté le )
  4. « Table 2.2 Number of people affected by the Chernobyl accident (to December 2000) » [PDF], The Human Consequences of the Chernobyl Nuclear Accident, UNDP and UNICEF, (consulté le ), p. 32
  5. « Table 5.3: Evacuated and resettled people » [PDF], The Human Consequences of the Chernobyl Nuclear Accident, UNDP and UNICEF, (consulté le ), p. 66
  6. (en) ICRIN Project, International Chernobyl Portal chernobyl.info, (lire en ligne)
  7. a et b (en) Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience. Report of the Chernobyl Forum Expert Group ‘Environment’, Vienna, International Atomic Energy Agency, (ISBN 92-0-114705-8, lire en ligne), p. 180
  8. (en) Boris Kagarlitsky, The New Detente: Rethinking East-West Relations, United Nations University Press, (ISBN 0-86091-962-5), « Perestroika: The Dialectic of Change »
  9. Associated Press, 24 April 2006, at msnbc.msn.com
  10. « Assessing the Chernobyl Consequences », International Atomic Energy Agency
  11. « UNSCEAR 2008 Report to the General Assembly, Annex D », United Nations Scientific Committee on the Effects of Atomic Radiation,
  12. « UNSCEAR 2008 Report to the General Assembly », United Nations Scientific Committee on the Effects of Atomic Radiation,
  13. a et b (en) William H Hallenbeck, Radiation Protection, CRC Press, (ISBN 0-87371-996-4), p. 15 :

    « Reported thus far are 237 cases of acute radiation sickness and 31 deaths. »

  14. « Chernobyl: the true scale of the accident », Chernobyl's Legacy: Health, Environmental and Socio-Economic Impacts (consulté le )
  15. Chernobyl Cancer Death Toll Estimate More Than Six Times Higher Than the 4,000 Frequently Cited, According to a New UCS Analysis Note: "The UCS analysis is based on radiological data provided by UNSCEAR, and is consistent with the findings of the Chernobyl Forum and other researchers."
  16. a et b « Torch: The Other Report On Chernobyl—executive summary », European Greens and UK scientists Ian Fairlie PhD and David Sumner – Chernobylreport.org, (consulté le )
  17. http://www.greenpeace.org/international/Global/international/planet-2/report/2006/4/chernobylhealthreport.pdf
  18. (en) Alexey V. Yablokov, Vassily B. Nesterenko et Alexey V. Nesterenko, Chernobyl: Consequences of the Catastrophe for People and the Environment (Annals of the New York Academy of Sciences), paperback, (ISBN 978-1-57331-757-3)
  19. a b c d e f g h i j k l m n o p et q (en) Zhores A. Medvedev, The Legacy of Chernobyl, paperback, (ISBN 978-0-393-30814-3)
  20. <Please add first missing authors to populate metadata.>, DOE Fundamentals Handbook – Nuclear physics and reactor theory, vol. 1 of 2, module 1, United States Department of Energy, , PDF (lire en ligne), p. 61

    Le modèle {{dead link}} doit être remplacé par {{lien brisé}} selon la syntaxe suivante :
    {{ lien brisé | url = http://example.com | titre = Un exemple }} (syntaxe de base)
    Le paramètre url est obligatoire, titre facultatif.
    Le modèle {{lien brisé}} est compatible avec {{lien web}} : il suffit de remplacer l’un par l’autre.

  21. « Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition (NUREG-0800) », United States Nuclear Regulatory Commission, (consulté le )
  22. a et b NV Karpan: 312–13.
  23. a b c d e f g h i j et k « IAEA Report INSAG-7 Chernobyl Accident: Updating of INSAG-1 Safety Series, No.75-INSAG-7 », Vienna, International Atomic Energy Agency,
  24. A.S.Djatlov:30
  25. (ru) « The official program of the test »
  26. A.S.Djatlov:31
  27. « What Happened at Chernobyl? », Nuclear Fissionary (consulté le )
  28. The accumulation of Xenon-135 in the core is burned out by neutrons. Thus, higher power settings, associated with higher neutron flux, burn the xenon out more quickly. Conversely, low power settings result in the accumulation of xenon.
  29. The information on accident at the Chernobyl NPP and its consequences, prepared for IAEA, Atomic Energy, v. 61, 1986, p. 308–320.
  30. The RBMK is a boiling water reactor, so in-core boiling is normal at higher power levels. The RBMK design has a negative void coefficient above 700 MW.
  31. N.V.Karpan:349
  32. (ru) E. O. Adamov et Yu. M. Cherkashov, et al., Channel Nuclear Power Reactor RBMK, Moscow, Hardcover, (ISBN 5-98706-018-4, lire en ligne)
  33. (ru) Anatoly Dyatlov, Chernobyl. How did it happen? (lire en ligne)
  34. (ru) « Chernobyl as it was – 2 »
  35. (ru) RI Davletbaev, Last shift Chernobyl. Ten years later. Inevitability or chance?, Moscow, Energoatomizdat, (ISBN 5-283-03618-9, lire en ligne)
  36. a et b Sergey A Pakhomov, « Estimation of Explosion Energy Yield at Chernobyl NPP Accident », Pure and Applied Geophysics, Springerlink.com, vol. 167, nos 4–5,‎ , p. 575 (DOI 10.1007/s00024-009-0029-9)
  37. « Chernobyl: Assessment of Radiological and Health Impact (Chapter 1) », Nuclear Energy Agency (consulté le )
  38. (ru) K.P. Checherov, Development of ideas about reasons and processes of emergency on the 4-th unit of Chernobyl NPP 26.04.1986, Slavutich, Ukraine, International conference "Shelter-98", 25–7 november 1998
  39. B. Medvedev, « JPRS Report: Soviet Union Economic Affairs Chernobyl Notebook », Novy Mir, (consulté le )
  40. « Cross-sectional view of the RBMK-1000 main building » (consulté le )
  41. (en) Grigori Medvedev, The Truth About Chernobyl, Hardcover, (ISBN 2-226-04031-5)
  42.  Meltdown in Chernobyl [Video], National Geographic ()
  43. Mil Mi-8 crash near Chernobyl [Video] ()
  44. a b c et d (en) « ''Special Report: 1997: Chernobyl: Containing Chernobyl?'' », BBC News,‎ (lire en ligne)
  45. Martin Zeilig, « Louis Slotin And 'The Invisible Killer' », The Beaver, vol. 75, no 4,‎ , p. 20–27 (lire en ligne, consulté le )
  46. « Веб публикация статей газеты », Swrailway.gov.ua (consulté le )
  47. (ru) « Методическая копилка », Surkino.edurm.ru (consulté le )
  48. a et b (en) Time: Disasters that Shook the World, New York City, Time Home Entertainment, (ISBN 1-60320-247-1)
  49. Modèle:Ru icon Video footage of Chernobyl disaster on 28 April
  50. Modèle:En icon American TV-footage about Chernobyl
  51. (en) « Chernobyl haunts engineer who alerted world », CNN Interactive World News, Cable News Network, Inc.,‎ (lire en ligne)
  52. Épisode Seconds From Disaster, septième épisode de la Modèle:Season 1 (2004)e saison de la série Seconds From Disaster, d'une durée de 30/40–50 minutes minutes. Autres crédits : Director: Maninderpal Sahota; Narrator: Ashton Smith; Producer: Greg Lanning; Edited by: Chris Joyce.
  53. a b c d e f g h et i « Interview of Valentyna Shevchenko to "Young Ukraine" (Ukrainian Pravda) », Istpravda.com.ua, (consulté le )
  54. Modèle:Uk icon Presidential Decree #501/2011 "For distinguishing with the state awards of Ukraine"
  55. Modèle:Uk icon Presidential Decree #502/2011 "For distinguishing with the state awards of Ukraine the citizens of foreign countries"
  56. a et b S. Bogatov, « Formation and spread of Chernobyl lavas », Radiochemistry, vol. 50, no 6,‎ , p. 650–654 (DOI 10.1134/S1066362208050131)
  57. Yu. Petrov, « Behavior of melts in the UO2-SiO2 system in the liquid-liquid phase separation region », Glass Physics and Chemistry, vol. 35, no 2,‎ , p. 199–204 (DOI 10.1134/S1087659609020126)
  58. C. Journeau, « Flow and Solidification of Corium in the VULCANO facility », {{Article}} : paramètre « périodique » manquant,‎ (lire en ligne)
  59. Mevedev Z. (1990):58–59
  60. (en) « Stephen McGinty: Lead coffins and a nation's thanks for the Chernobyl suicide squad », scotsman.com,‎ (lire en ligne)
  61. Chernobyl: The End of the Nuclear Dream, 1986, p.178, by Nigel Hawkes et al., ISBN 0-330-29743-0
  62. G. Sattonnay, « Alpha-radiolysis effects on UO2 alteration in water », Journal of Nuclear Materials, vol. 288, no 1,‎ , p. 11–19 (DOI 10.1016/S0022-3115(00)00714-5, lire en ligne, consulté le )
  63. F. Clarens, « Formation of Studtite during the Oxidative Dissolution of UO2 by Hydrogen Peroxide: A SFM Study », Environmental Science & Technology, vol. 38, no 24,‎ , p. 6656–6661 (DOI 10.1021/es0492891)
  64. B. E. Burakov, E. E. Strykanova, E. B. Anderson « Secondary Uranium Minerals on the Surface of Chernobyl" Lava" » ()
    « (ibid.) », dans Materials Research Society Symposium Proceedings, vol. 465, p. 1309–1312
  65. P. C Burns, « Studtite, (UO2)(O2)(H2O)2(H2O)2: The first structure of a peroxide mineral », American Mineralogist, vol. 88,‎ , p. 1165–1168 (lire en ligne)
  66. (en) Tom Burnett, « When the Fukushima Meltdown Hits Groundwater », Hawai'i News Daily,‎ (lire en ligne)
  67. The Social Impact of the Chernobyl Disaster, 1988, p. 166, by David R. Marples ISBN 0-333-48198-4
  68. Medal for Service at the Chernobyl Nuclear Disaster
  69. (en) « Chernobyl's silent graveyards », BBC News,‎ (lire en ligne)
  70. IAEA Report INSAG-1 (International Nuclear Safety Advisory Group). Summary Report on the Post-Accident Review on the Chernobyl Accident. Safety Series No. 75-INSAG-1.IAEA, Vienna, 1986.
  71. a b et c Modèle:Ru icon« Expert report to the IAEA on the Chernobyl accident », {{Article}} : paramètre « périodique » manquant, Atomic Energy, vol. 61,‎ (lire en ligne)
  72. « NEI Source Book: Fourth Edition (NEISB_3.3.A1) », Insc.anl.gov (consulté le )
  73. (en) David R. Marples, Ukraine Under Perestroika: Ecology, Economics and the Workers' Revolt, Basingstoke, Hampshire, MacMillan Press, , 50–51, 76
  74. « Malformations in a chornobyl-impacted region », ncbi.nlm.nih.gov, (consulté le )
  75. « Chronic radiation exposure in the Rivne-Polissia region of Ukraine: implications for birth defects », Ncbi.nlm.nih.gov, (consulté le )
  76. Developmental Instability of Plants and Radiation from Chernobyl (www.jstor.org)
  77. « Elevated frequency of abnormalities in barn swallows from Chernobyl. », ncbi.nlm.nih.gov, (consulté le )
  78. « Cleft lip and cleft palate birth rate in Bavaria before and after the Chernobyl nuclear power plant accident », ncbi.nlm.nih.gov, (consulté le )
  79. « WHO Report on Chernobyl Health Effects 2006 -Health Effects of the Chernobyl Accident and Special Health Care Programmes » [PDF], WHO, (consulté le )
  80. « Ten years after Chernobyl : What do we really know? », Iaea.org, (consulté le )
  81. a et b Marples, David R. (1996) "Chernobyl: The Decade of Despair" in Bulletin of the Atomic Scientists May 1996. p. 20.
  82. « Tchernobyl, 20 ans après », RFI,‎ (lire en ligne)
  83. « Path and extension of the radioactive cloudl », IRSN (consulté le )
  84. Modèle:PDFlink
  85. (en) Richard Francis Mould, Chernobyl Record: The Definitive History of the Chernobyl Catastrophe, CRC Press, (ISBN 0-7503-0670-X), p. 48
  86. Modèle:PDFlink
  87. « Deposition of radionuclides on soil surfaces 3.1.5 »
  88. (en) Peter Gould, Fire In the Rain: The Dramatic Consequences of Chernobyl, Baltimore, MD, Johns Hopkins Press,
  89. (en) Richard Gray, « How we made the Chernobyl rain », Telegraph, London,‎ (lire en ligne)
  90. a et b « Chernobyl Accident », World Nuclear Association, (consulté le )
  91. H. Dederichs, Pillath, J.; Heuel-Fabianek, B.; Hill, P.; Lennartz, R., « Langzeitbeobachtung der Dosisbelastung der Bevölkerung in radioaktiv kontaminierten Gebieten Weißrusslands – Korma-Studie. Vol. 31, series "Energy & Environment" by Forschungszentrum Jülich », Hdl.handle.net, (consulté le )
  92. « Conséquences de la catastrophe de Tchernobyl en France », French-speaking Wikipedia (consulté le )
  93. « 'Radioactive boars' on loose in Germany », Agence France Presse, (consulté le )

    Le modèle {{dead link}} doit être remplacé par {{lien brisé}} selon la syntaxe suivante :
    {{ lien brisé | url = http://example.com | titre = Un exemple }} (syntaxe de base)
    Le paramètre url est obligatoire, titre facultatif.
    Le modèle {{lien brisé}} est compatible avec {{lien web}} : il suffit de remplacer l’un par l’autre.

  94. Chernobyl source term, atmospheric dispersion, and dose estimation, EnergyCitationsDatabase, 1 November 1989
  95. a et b OECD Papers Volume 3 Issue 1, OECD, 2003
  96. « Unfall im japanischen Kernkraftwerk Fukushima », ZAMG, (consulté le )
  97. « Fukushima radioactive water could overflow soon », Asahi Shimbun, Japan, (consulté le )
  98. Mould 2000, p. 29. "The number of deaths in the first three months were 31[.]"
  99. a b c et d (en) David R. Marples, The Social Impact of the Chernobyl Disaster, New York, NY, St Martin’s Press,
  100. a b c d et e Chernobyl: Catastrophe and Consequences, Springer, Berlin ISBN 3-540-23866-2
  101. a et b Kryshev, I.I., Radioactive contamination of aquatic ecosystems following the Chernobyl accident. Journal of Environmental Radioactivity, 1995. 27: p. 207–219
  102. EURATOM Council Regulations No. 3958/87, No. 994/89, No. 2218/89, No. 770/90
  103. Fleishman, D.G., et al., Cs-137 in fish of some lakes and rivers of the Bryansk region and North-West Russia in 1990–1992. Journal of Environmental Radioactivity, 1994. 24: p. 145–158
  104. a et b Modèle:PDFlink IAEA, Vienna
  105. a et b Wildlife defies Chernobyl radiation, by Stefen Mulvey, BBC News
  106. a et b The International Chernobyl Project Technical Report, IAEA, Vienna, 1991
  107. « 'Radiation-Eating' Fungi Finding Could Trigger Recalculation Of Earth's Energy Balance And Help Feed Astronauts »
  108. (langue non reconnue : [[ + langue non reconnue : modèle + de + langue non reconnue : icon]]) « 25 Jahre Tschernobyl: Deutsche Wildschweine immer noch verstrahlt – Nachrichten Wissenschaft – WELT ONLINE », Die Welt, (consulté le )
  109. a et b Rosslyn Beeby, « World's nuclear power industry in decline », Canberra Times,
  110. « Fortsatt nedforing etter radioaktivitet i dyr som har vært på utmarksbeite – Statens landbruksforvaltning », SLF, (consulté le )
  111. « Chernobyl Forum summaries », International Atomic Energy Agency (consulté le )
  112. a b c et d « Chernobyl's Legacy: Health, Environmental and Socio-Economic Impacts », Chernobyl Forum assessment report, Chernobyl Forum (consulté le )
  113. « UNSCEAR – Chernobyl health effects », Unscear.org (consulté le )
  114. Rosenthal, Elisabeth. (6 September 2005) Experts find reduced effects of Chernobyl. nytimes.com. Retrieved 14 February 2008.
  115. « Thyroid Cancer », Genzyme.ca (consulté le )
  116. « CHERNOBYL at 25th anniversary Frequently Asked Questions April 2011 », World Health Organisation, (consulté le )
  117. a b c d e et f « Chernobyl's Legacy: Health, Environmental and Socia-Economic Impacts and Recommendations to the Governments of Belarus, Russian Federation and Ukraine » [PDF], International Atomic Energy Agency – The Chernobyl Forum: 2003–2005 (consulté le )
  118. « Excerpt from UNSCEAR 2001 REPORT ANNEX – Hereditary effects of radiation » [PDF] (consulté le )
  119. Bogdanova TI, Zurnadzhy LY, Greenebaum E, McConnell RJ, Robbins J, Epstein OV, Olijnyk VA, Hatch M, Zablotska LB, Tronko MD., « A cohort study of thyroid cancer and other thyroid diseases after the Chornobyl accident: pathology analysis of thyroid cancer cases in Ukraine detected during the first screening (1998-2000). », Cancer, vol. 11, no 107,‎ , p. 2599-66 (PMID 17083123, DOI 10.1002/cncr.22321)
  120. Dinets A, Hulchiy M, Sofiadis A, Ghaderi M, Höög A, Larsson C, Zedenius J., « Clinical, Genetic and Immunohistochemical Characterization of 70 Ukrainian Adult Cases with Post-Chornobyl Papillary Thyroid Carcinoma. », Eur J Endocrinol, vol. 166,‎ , p. 1049–60 (PMID 22457234, DOI 10.1530/EJE-12-0144)
  121. Fred Mettler, « IAEA Bulletin Volume 47, No. 2 – Chernobyl's Legacy », Iaea.org (consulté le )
  122. « What's the situation at Chernobyl? », Iaea.org (consulté le )
  123. Fred Mettler, « Chernobyl's living legacy », Iaea.org (consulté le )
  124. « UNSCEAR assessment of the Chernobyl accident », United Nations Scientific Committee of the Effects of Atomic Radiation (consulté le )
  125. « Historical milestones », United Nations Scientific Committee of the Effects of Atomic Radiation (consulté le )
  126. World Health Organisation "World Health Organization report explains the health impacts of the world's worst-ever civil nuclear accident", WHO, 26 April 2006. Retrieved 4 April 2011.
  127. Amy Berrington de González, Mahadevappa Mahesh, Kwang-Pyo Kim, Mythreyi Bhargavan, Rebecca Lewis, Fred Mettler, and Charles Land, « Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007 », Arch Intern Med, vol. 22,‎ , p. 2071–2077 (lire en ligne)
  128. a b et c DOI 10.1126/science.332.6032.908
  129. « How Many Cancers Did Chernobyl Really Cause? », UCSUSA.org,
  130. a et b « The Chernobyl Catastrophe – Consequences on Human Health », Greenpeace, (consulté le )
  131. Charles Hawley, « Greenpeace vs. the United Nations », The Chernobyl Body Count Controversy, SPIEGEL (consulté le )
  132. « 20 years after Chernobyl – The ongoing health effects », IPPNW, (consulté le )
  133. a et b « Details », Annals of the New York Academy of Sciences, Annals of the New York Academy of Sciences (consulté le )
  134. M. I. Balonov, « Review of Volume 1181 », New York Academy of Sciences, (consulté le ) Full text PDF
  135. a et b « ASU school of life scientist:Kenneth Mossman »
  136. DOI 10.1118/1.598208
  137. DOI 10.1093/ije/28.1.19
  138. Shlyakhter, Alexander & Wilson, Richard (1992), “Chernobyl and Glasnost: The Effects of Secrecy on Health and Safety”, in Environment, Vol. 34 no. 5, Abingdon, Oxfordshire: Taylor & Francis Ltd.
  139. Petryna, Adriana (1995), “Sarcophagus: Chernobyl in Historical Light”, in Cultural Anthropology, Vol. 10, no. 2, Blackwell Publishing.
  140. a b et c (en) Adriana Petryna, Life Exposed: Biological Citizens after Chernobyl, Princeton, NJ, Princeton University Press,
  141. « Information Notice No. 93-71 », Nrc.gov (consulté le )
  142. IAEA's Power Reactor Information System polled in May 2008 reports shut down for units 1, 2, 3 and 4 respectively at 30 November 1996, 11 October 1991, 15 December 2000 and 26 April 1986.
  143. Чернобыль, Припять, Чернобыльская АЭС и зона отчуждения, « "Shelter" object description », Chornobyl.in.ua (consulté le )
  144. « Inside Chernobyl », 60 Minutes Australia, Nine Network Australia,
  145. V. Baryakhtar, V. Gonchar, A. Zhidkov and V. Zhidkov, Radiation damages and self-spluttering of high radioactive dielectrics: Spontaneous emission of submicrometre dust particles, Condensed Matter Physics, 2002, 5(3{31}), 449–471.
  146. a et b A. A. Borovoi, « Nuclear fuel in the shelter », Atomic Energy, vol. 100, no 4,‎ , p. 249–256 (DOI 10.1007/s10512-006-0079-3)
  147. (en) Associated Press, « News », Yahoo News,‎ (lire en ligne)
  148. (en) TravelSnitch, « Tours of Chernobyl sealed zone officially begin », TravelSnitch,‎ (lire en ligne)
  149. « NOVARKA and Chernobyl Project Management Unit confirm cost and time schedule for Chernobyl New Safe Confinement », (consulté le )
  150. « CRDP: Chernobyl Recovery and Development Programme (United Nations Development Programme) », Undp.org.ua (consulté le )
  151. « Processing the Dark: Heavy Water – A Film for Chernobyl | Movie Mail UK », Moviemail-online.co.uk (consulté le )
  152. « Blog » (consulté le )
  153. « Heavy Water: a film for Chernobyl », Atomictv.com, (consulté le )
  154. (en) Roger E. Kasperson, Stallen, Pieter Jan M., Communicating Risks to the Public: International Perspectives, Berlin, Springer Science and Media, , 160–162 p. (ISBN 0-7923-0601-5)

Further reading

Documents

The source documents relating to the emergency, published in unofficial sources:

External links

Sur les autres projets Wikimedia :

Modèle:Chernobyl disaster

Modèle:Link GA Modèle:Link GA Modèle:Link GA Modèle:Link FA Modèle:Link FA Modèle:Link FA Modèle:Link FA Modèle:Link FA Modèle:Link FA fr:Catastrophe nucléaire de Tchernobyl