Conjecture de Schanuel

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant les mathématiques
Cet article est une ébauche concernant les mathématiques.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

En mathématiques, et plus précisément en théorie des nombres transcendants, la conjecture de Schanuel s'énonce ainsi :

Soit n un entier naturel et soient z1,...,zn des nombres complexes supposés lineairement indépendants au-dessus du corps Q des nombres rationnels. Alors l'extension Q(z1,...,zn,exp(z1),...,exp(zn)) du corps Q a un degré de transcendance au moins égal à n.

Cet énoncé fut conjecturé par Stephen Schanuel (en) au début des années 1960.

Cette conjecture contient la plupart des énoncés de transcendance connus – comme le théorème de Lindemann-Weierstrass et le théorème de Baker (qui généralise celui de Gelfond-Schneider) – ou conjecturés (comme l'indépendance algébrique de π et e) concernant la fonction exponentielle.


(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Schanuel's conjecture » (voir la liste des auteurs).