Théorème du sandwich au jambon

Un article de Wikipédia, l'encyclopédie libre.
Le théorème du sandwich au jambon affirme l'existence d'un plan qui coupe chacun des trois solides en deux parties de volumes égaux.

En mathématiques, le théorème du sandwich au jambon, ou théorème de Stone-Tukey, s'exprime, de façon imagée, comme la possibilité de couper en quantités égales, d'un seul coup de couteau, le jambon, le fromage et le pain d'un sandwich[1]. Il se formalise et se généralise en dimension quelconque.

Énoncé[modifier | modifier le code]

Étant donné n parties[2] Lebesgue-mesurables et de mesures finies d'un espace euclidien de dimension n, il existe au moins un hyperplan affine divisant chaque partie en deux sous-ensembles de mesures égales[1].

Historique[modifier | modifier le code]

Le théorème est parfois appelé théorème de Stone-Tukey, d'après Arthur Stone et John Tukey[3]. Hugo Steinhaus avait conjecturé ce théorème dans le Livre écossais. Il a été aussitôt démontré en 1938 par Stefan Banach à l'aide du théorème de Borsuk-Ulam[4].

Démonstration[modifier | modifier le code]

Soient les n parties de , de mesures finies , que l'on souhaite couper en deux parties d'égale mesure (en dimension n = 3, la figure illustre la preuve avec, pour , des solides de Platon en orange et rouge, la solution est ici le plan défini par les trois centres).

Ayant fixé un vecteur de la sphère , on considère, pour tout réel , l'hyperplan affine orthogonal à passant par , et le demi-espace délimité par cet hyperplan et contenant . Le volume de l'intersection de et de ce demi-espace est une fonction continue de et vérifie :

Comme de plus est une fonction décroissante de , qui tend vers 0 quand tend vers et vers quand tend vers , l'ensemble des réels tels que est un segment non vide qui vérifie . Son milieu est donc une fonction continue impaire de vérifiant pour toute direction .

Par composition, la fonction

est également continue. On peut donc lui appliquer le théorème de Borsuk-Ulam, ce qui fournit une direction telle que . Pour un tel , l'hyperplan orthogonal à et passant par coupe les pour en deux morceaux de même mesure car

Ainsi, est vrai pour par choix de et pour par définition de .

Notes et références[modifier | modifier le code]

  1. a et b (en) Jiří Matoušek, Using the Borsuk-Ulam Theorem : Lectures on Topological Methods in Combinatorics and Geometry, Springer, , 196 p. (ISBN 978-3-540-00362-5, lire en ligne), p. 47.
  2. Les n parties ne sont pas supposées connexes : dans le sandwich, les deux tranches de pain constituent une partie.
  3. (en) A. H. Stone et J. W. Tukey, « Generalized “sandwich” theorems », Duke Mathematical Journal, vol. 9, no 2,‎ , p. 356-359 (DOI 10.1215/S0012-7094-42-00925-6).
  4. (en) W. A. Beyer et Andrew Zardecki, « The early history of the ham sandwich theorem », Amer. Math. Monthly, vol. 111,‎ , p. 58-61 (JSTOR 4145019, lire en ligne).

Lien externe[modifier | modifier le code]

(en) Ham sandwich theorem and a proof, sur PlanetMath