Clôture algébrique

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Ne doit pas être confondu avec Fermeture algébrique.

En mathématiques, une clôture algébrique d'un corps commutatif K est une extension algébrique L de K qui est algébriquement close, c'est-à-dire telle que tout polynôme de degré supérieur ou égal à un, à coefficients dans L, admet au moins une racine dans L.

Une clôture algébrique d'un corps K peut être vue comme une extension algébrique maximale de K. En effet, il suffit de remarquer que si L est une extension algébrique de K, alors une clôture algébrique de L est également une clôture algébrique de K, donc L est contenu dans la clôture algébrique de K.

Une clôture algébrique de K est également un corps algébriquement clos minimal (pour l’inclusion) contenant K, puisque si M est un corps algébriquement clos contenant K alors, parmi les éléments de M, ceux qui sont algébriques sur K forment une clôture algébrique de K.

Une clôture algébrique d'un corps K a le même cardinal que K si K est infini ; elle est dénombrable si K est fini.

En dehors du cas où K est séparablement clos (donc algébriquement clos en caractéristique nulle), entre deux clôtures algébriques de K il n'y a pas unicité d'isomorphismes. Il vaut donc mieux éviter l’expression « la clôture algébrique » et privilégier l’article indéfini « une » (une autre façon de le voir est qu’il n’existe pas de foncteur de la catégorie des corps dans elle-même qui envoie tout corps K sur une clôture algébrique de K).

L'existence d'une clôture algébrique pour tout corps nécessite l'axiome du choix.

Exemples[modifier | modifier le code]

  • D'après le théorème fondamental de l'algèbre, une clôture algébrique du corps des nombres réels est le corps des nombres complexes.
  • Une clôture algébrique du corps des nombres rationnels est le corps des nombres algébriques.
  • Une clôture algébrique d'un corps fini d'ordre premier p est un corps dénombrable. Pour tout entier naturel n non nul, il contient un et un seul sous-corps Fpn d'ordre pn, et il est égal à la réunion de tous ces sous-corps (ou plus savamment : leur limite inductive, avec FpdFpn si d est un diviseur de n).
  • Il existe des corps algébriquement clos dénombrables inclus dans le corps des nombres complexes, qui contiennent (strictement) le corps des nombres algébriques ; ce sont les clôtures algébriques des extensions transcendantes du corps des rationnels, comme celle de l'extension ℚ(π).

Théorème de Steinitz[modifier | modifier le code]

  1. Tout corps K possède une clôture algébrique.
  2. Deux clôtures algébriques de K sont toujours reliées par un isomorphisme de corps laissant invariants les éléments de K.

La preuve peut se faire en utilisant le lemme de Zorn.

On peut aussi utiliser la méthode d'Artin basée sur le théorème d'existence d'idéaux maximaux de Krull, ou bien en donner une démonstration constructive par récurrence transfinie, en munissant l'ensemble des polynômes à coefficients dans K d'un bon ordre, et en utilisant le fait que pour tout polynôme irréductible P à coefficients dans un corps M, M(X)/(P) est un corps de rupture de P.

Théorème d'Artin-Schreier[modifier | modifier le code]

La clôture algébrique de ℝ est une extension finie de ℝ. On peut se demander plus généralement quels sont les corps possédant cette propriété.

Théorème (Artin-Schreier)[1] — Si K est un corps d'indice fini strictement plus grand que 1 dans sa clôture algébrique, alors K est un corps réel clos. En particulier, K[–1] est algébriquement clos.

Note et références[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Algebraic closure » (voir la liste des auteurs)

  1. (en) Serge Lang, Algebra, 2002 [détail des éditions], chap. VI, cor. 9.3