Atmosphère planétaire

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 6 février 2020 à 15:54 et modifiée en dernier par Arcyon37 (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.
Illustration de quelque corps du Système solaire.
Les planètes du système solaire et la Lune (proportions non respectées).

En astronomie, le mot atmosphère (du grec ἀτμός, vapeur, air, et σφαῖρα, sphère) désigne au sens large, l'enveloppe externe d'une planète ou d'une étoile et qui est constituée principalement de gaz neutres et d'ions (ou plasmas). À première vue, cela semble simple. Les gaz, toutefois, ne se comportent pas comme un liquide ou un morceau de roche dont on peut déterminer la surface de séparation avec le milieu : il est, en effet, impossible d'indiquer l'endroit précis où finit l'atmosphère et où commence l'espace interplanétaire. Dès qu'ils ne sont plus retenus par la gravitation, les gaz « s'échappent » vers l'espace, fuyant en permanence le corps céleste. La Terre, Vénus, Mars, Pluton et trois satellites de géantes gazeuses (Titan, Encelade et Triton) ont aussi une atmosphère qui enveloppe leur surface. De plus, les géantes gazeuses (Jupiter, Saturne, Uranus, et Neptune) sont principalement composées de gaz. D'autres corps célestes du système solaire tels que la Lune (sodium), Mercure (sodium), Europe (oxygène) et Io (soufre) possèdent une très fine atmosphère. La planète naine Pluton est aussi dotée d'une enveloppe gazeuse lorsqu'elle est au plus près du Soleil, mais ces gaz sont solidifiés sur la plus grande partie de son orbite.

Atmosphère normalisée

Cette section traite de l'atmosphère normalisée. La température et la pression varient d'un point à l'autre de l'astre, planète ou satellite, et en fonction de sa météorologie. Or, ces valeurs ont une grande importance dans de nombreux processus chimiques et physiques, notamment en ce qui concerne les mesures. Il faut donc définir des « conditions normales de température et de pression » (CNTP), le terme « normal » renvoyant à « norme » (valeur arbitraire de référence acceptée par consensus), et non pas « habituel ». On parle aussi de « température et pression normales » (TPN). De nombreuses valeurs sont données pour ces conditions.

On parle aussi de « conditions ambiantes ». Le terme « ambiant » est ambigu, puisque la température « habituelle » dépend du climat et de la saison. Il faut donc aussi définir la notion de « condition ambiante de température et de pression ».

Ceci amène à la définition plus générale d'« atmosphère normalisée ». En effet, la température et la pression de l'atmosphère varient en fonction de la position sur le globe, de l'altitude et du moment (saison, heure de la journée, conditions locales de météorologie, etc.). Il est donc utile de définir des valeurs « normales » de pression et de température en fonction de l'altitude.

Formule du nivellement barométrique

La formule du nivellement barométrique décrit la répartition verticale des molécules de gaz dans l'atmosphère de la Terre, et donc la variation de la pression en fonction de l'altitude.

On parle ainsi d'un gradient de pression vertical, mais qui ne peut être décrit mathématiquement qu'en approximations, en raison de la dynamique du climat dans l'atmosphère inférieure. Sur Terre, en première approximation, on peut supposer que près du niveau de la mer, la pression diminue d'un hectopascal quand l'altitude augmente de 8 mètres.

Composition

La composition initiale de l'atmosphère d'une planète dépend des caractéristiques chimiques et de la température de la nébuleuse mère durant la formation du système planétaire. Par la suite, la composition exacte de l'atmosphère d'une planète dépend de la chimie des gaz qui la composent et des apports de gaz par le volcanisme. Les interactions entre ces différents gaz dépendent quant à elles de la température et des types de radiations solaires atteignant la planète. Ainsi Mars et Vénus avaient probablement de l'eau, liquide ou sous forme de vapeur, mais la photodissociation causée par les ultraviolets l'a transformé en hydrogène et oxygène. Finalement, les gaz plus légers s'échappent, selon la masse et la température de la planète, ce qui donne une composition finale différente de l'une à l'autre planète :

  • l'intense gravité de Jupiter lui a permis de retenir des éléments légers comme l'hydrogène et l'hélium en quantité importante, deux éléments pratiquement absents de la Terre ou de Mars ;
  • la distance au Soleil détermine la température des gaz atmosphériques. Plus la température est élevée plus les gaz ont une énergie cinétique importante qui leur permet d'atteindre la vitesse de libération. Ainsi des corps célestes comme Titan, Triton et Pluton ont pu retenir une atmosphère parce qu'ils sont des mondes très froids, même s'ils ont une faible gravité. Les températures basses permettent également de congeler les gaz dans la croûte ou les calottes polaires pour être relâchés lentement par sublimation plus tard.

L'atmosphère d'une planète est donc influencée par sa masse, sa distance au Soleil et les interactions de ses composants chimiques sur une période de plus de 4 milliards d'années. D'autre part le vent solaire, formé de particules ionisées très énergétiques, arrache les éléments les plus légers par collision ; cet effet est diminué quand la planète possède un champ magnétique capable de dévier la majeure partie du vent solaire (c'est le cas de la Terre, mais pas de Vénus). Pourtant, des particules chargées peuvent échapper une planète magnétisée le long des lignes de champ magnétique dans les régions polaires. Comptant tous les processus d'échappement importants on trouve que le champ magnétique ne protège pas une planète d'échappement atmosphérique[1].

Enfin, la vie est un facteur important dans la composition de l'atmosphère. En introduisant des réactions chimiques qui n'existaient pas entre les gaz originels, la biosphère modifie la composition indépendamment des caractéristiques propres du corps céleste. Par exemple sur Terre, citons la production d'O2 par les végétaux chlorophylliens et le recyclage de cet oxygène en CO2 par un grand nombre d'organismes vivants.

Composition, température et pression de l'atmosphère des principaux corps du système solaire en ayant une[2]
Corps Atmosphère Image Température1 (K) Pression1 (atm) Dihydrogène (H2) (hydrogène pour le Soleil) Hélium (He) Diazote (N2) (azote pour le Soleil) Dioxygène (O2) (oxygène pour le Soleil) Dioxyde de carbone (CO2) Méthane (CH4) Vapeur d'eau (H2O) Argon (Ar) Néon (Ne)
Soleil Atmosphère du Soleil 4 000 à 8 000[3] 0,125[3] 90,965 %[3] 8,889 %[3] 102 ppm[3] 774 ppm[3] - - - - 112 ppm[3]
Vénus Atmosphère de Vénus 732 90 - 0,002 % 3,5 % - 96,5 % - 0,002 % 0,007 % 0,015 %
Terre Atmosphère de la Terre 288 1 0,5 % 0,0005 % 78,1 % 20,9 % 0,04 % 0,0002 % 0,001 à 5 % 0,93 % 0,002 %
Mars Atmosphère de Mars 223 0,006 - - 1,9 % 0,15 % 97 % - 0,03 % 1,93 % 0,0003 %
Jupiter Atmosphère de Jupiter 170 - 86 % 13 % - - - 0,1 % 0,1 % - -
Saturne Atmosphère de Saturne 130 - 96 % 3 % - - - 0,4 % 0,0005 % - -
Uranus Atmosphère d'Uranus 59 - 83 % 13 % - - - 1,99 % - - -
Neptune Atmosphère de Neptune 59 - 80 % 19 % - - - 1,5 % - - -
Titan Atmosphère de Titan 95 1,45 0,1 % à 0,2 % - 98,4 % - - 1,6 % - - -
(1) Pour les planètes telluriques (Mercure, Vénus, la Terre et Mars) et Titan, la température et la pression sont données à la surface. Pour les géantes gazeuses (Jupiter et Saturne) et les géantes de glaces (Uranus et Neptune), la température est donnée là où la pression est de 1 atm. Pour le Soleil, la température et la pression sont celles de la base de la photosphère et la composition est celle de la photosphère.
Composition, température et pression de l'atmosphère de quelques exoplanètes
Corps Atmosphère Température (K) Pression Hydrogène (H) Carbone (C) Oxygène (O) Sodium (Na) Vapeur d'eau (H2O) Monoxyde de carbone (CO) Dioxyde de carbone (CO2) Méthane (CH4)
HD 209458 b Atmosphère de HD 209458 b ? 1 bar à 1,29 RJ
33 ± 5 millibars à T = 2 200 ± 260 K
détecté détecté détecté détecté détecté détecté - détecté
HD 189733 b Atmosphère de HD 189733 b ? ? - - - - détecté - - détecté

Importance

Pour un géologue, l'atmosphère est un agent évolutif essentiel à la morphologie d'une planète. Le vent transporte des poussières qui érodent le relief et laissent des dépôts. Le gel et les précipitations, qui dépendent de la composition, façonnent également le relief. Pour le météorologue, la composition de l'atmosphère détermine le climat et ses variations. Pour le biologiste, la composition est intimement liée à l'apparition de la vie et à son évolution.

Le problème de l'existence et de la composition de l'atmosphère se pose aussi pour les exoplanètes. La première géante gazeuse connue hors du Système solaire, Osiris, a été découverte en 1999 ; son atmosphère contient de l'oxygène et du carbone.

Histoire

Après la formation de la Terre, à la suite du dégazage des roches, le CO2 était beaucoup plus abondant qu'aujourd'hui permettant ainsi un effet de serre bien plus important. Cet effet a permis de maintenir une température moyenne proche de celle d'aujourd'hui (~ 15 °C). Au fur et à mesure, l'intensité du Soleil a augmenté et le niveau de CO2 a diminué à cause du cycle du carbone qui a transformé la plupart du gaz sous forme de roches carbonatées. À l'heure actuelle, on trouve uniquement des traces de CO2 dans l'air. Par ailleurs, le développement intense de la vie sur Terre (il y a environ 2 milliards d'années) a favorisé l'augmentation du dioxygène dans l'atmosphère grâce à la photosynthèse des plantes. Le cycle du carbone et le développement de la vie expliquent que notre atmosphère actuelle est composée principalement de diazote N2 et de dioxygène O2.

Notes et références

  1. H. Gunell, R. Maggiolo, H. Nilsson, G. Stenberg Wieser, R. Slapak, J. Lindkvist, M. Hamrin et J. De Keyser, « Why an intrinsic magnetic field does not protect a planet against atmospheric escape », Astronomy and Astrophysics, vol. 614,‎ , p. L3 (DOI 10.1051/0004-6361/201832934, Bibcode 2018A&A...614L...3G)
  2. Aymeric SPIGA, « Les atmosphères planétaires UE M1 Grandes Questions Environnementales », sur Université de Jussieu,
  3. a b c d e f et g (en) « Sun Fact Sheet », sur nasa.gov

Voir aussi

Il existe une catégorie consacrée à ce sujet : Atmosphère.

Sur les autres projets Wikimedia :

Articles connexes

Lien externe