Suite et série de fonctions

Un article de Wikipédia, l'encyclopédie libre.
Ceci est la version actuelle de cette page, en date du 1 novembre 2021 à 13:56 et modifiée en dernier par OrlodrimBot (discuter | contributions). L'URL présente est un lien permanent vers cette version.
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

En analyse, une suite ou une série de fonctions est une suite ou une série dont les termes sont des fonctions toutes définies sur un ensemble X, et à valeurs réelles ou complexes, ou plus généralement vectorielles.

Modes de convergence[modifier | modifier le code]

Régularité[modifier | modifier le code]

  • La limite uniforme d'une suite de fonctions continues est continue.
  • Théorème de la limite simple de Baire : pour une suite de fonctions d'une variable réelle continues convergeant simplement sur un intervalle I, l'ensemble des points de continuité de sa limite est dense.
  • Théorème d'Egoroff : sur un espace de probabilités, si une suite de fonctions converge presque partout, alors elle converge uniformément en dehors d'une partie mesurable de mesure aussi petite que souhaitée. Une de ses applications est le théorème de Lusin : toute fonction borélienne d'une variable réelle est continue en dehors d'un ensemble mesurable de mesure aussi petite que souhaitée. Ces résultats peuvent être vus comme l'analogue du théorème de la limite simple de Baire en théorie de la mesure.

Autres résultats[modifier | modifier le code]

  • Le théorème de convergence monotone et le théorème de convergence dominée permettent de passer à la limite dans les intégrales. La convergence presque partout des fonctions à intégrer ne suffit pas ; il faut une condition supplémentaire (suite croissante ou condition de domination).
  • Les théorèmes de Dini assurent, sous des hypothèses supplémentaires, que certaines suites simplement convergentes sont uniformément convergentes.

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :