Approximation BKW

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir BKW.

En physique, l'approximation BKW (en l'honneur de Léon Brillouin[1], Hendrik Anthony Kramers[2] et Gregor Wentzel[3]) est une méthode développée en 1926 qui permet d'étudier le régime semi-classique d'un système quantique. La fonction d'onde est développée asymptotiquement au premier ordre de la puissance du quantum d'action  \hbar .

L'idée de base de la méthode BKW est que l'équation de Schrödinger se dérive de l'équation de propagation des ondes. On doit donc retrouver la mécanique classique dans la limite  \hbar \rightarrow 0 comme on retrouve l'optique géométrique lorsque la longueur d'onde  \lambda \rightarrow 0 dans la théorie de l'optique ondulatoire.

L'approximation BKW (pour les francophones européens) est également connue sous les initiales WKB (pour les anglophones et les francophones nord-américains), WKBJ, BWKJ et parfois WBK, BWK. Le J supplémentaire est pour le mathématicien Harold Jeffreys, qui a développé en 1923 une méthode générale d'approximation pour des équations différentielles linéaires du second ordre, qui inclut l'équation de Schrödinger à une dimension. Les trois physiciens BKW n'avaient apparemment pas eu connaissance de ce travail.

Formule à une dimension d'espace[modifier | modifier le code]

De façon générale la fonction d'onde est mise sous la forme ansatz :


\psi(\vec{r},t) \ = \ A(\vec{r},t) \  \exp \left[ \ \frac{i}{\hbar} \  S(\vec{r},t) \ \right]

Les deux fonctions inconnues sont l'amplitude A et l'action S, l'une de ces deux fonctions est en général considérée comme « lentement variable ». En fait seul le cas unidimensionnel où \vec{r}=R est utilisé, c'est ce cas que nous allons développer ici.

Formule BKW[modifier | modifier le code]

Notons  \psi la fonction d'onde, solution stationnaire de l'équation de Schrödinger, d'une particule de masse  m se déplaçant dans le potentiel  V(R)  ;

 \left[  -{ \hbar^2 \over 2 m } {d^2 \over d R^2}  + V(R)  \right] \psi(R) =  E \psi(R)

L'approximation BKW consiste à écrire la fonction d'onde sous la forme


\psi^{\rm BKW} (R) = {C_+ \over \sqrt{ |p(R) |
 } } e^{ {i \over \hbar} \int
p } + {C_- \over \sqrt{ |p(R) | } } e^{- {i \over \hbar} \int
p }

p(R) = \sqrt{ 2 m (E - V(R))} est l'impulsion locale de la particule.

Sens physique[modifier | modifier le code]

Notons le sens physique simple :


  1. Dans la région classiquement permise plus la particule va vite, plus sa probabilité de présence diminue. En effet là où E > V(R), la probabilité de présence  |\psi|^2 sera proportionnelle à  1\over p .
  2. Dans la région classiquement interdite la probabilité de présence  |\psi|^2 sera exponentiellement décroissante en  e^{- \frac{1}{\hbar} \int |p | } . En effet là où  E < V(R), on a alors  p(R) = i  \sqrt{ | 2 m (E - V(R)) | } et le terme exponentiellement croissant sera en général divergent et donc non physique, la normalisation de la fonction d'onde impose alors  C_+=0 )

Domaine de validité[modifier | modifier le code]

Le domaine de validité de l'approximation est le suivant

  1. \left|
{d \bar \lambda \over d R }
\right|  \ll  1
\bar \lambda(R)
= \hbar / p(R) est la longueur d'onde de de Broglie dite réduite (divisée par 2 π)
  2. Une seconde condition, qui est souvent vérifiée, vient s'ajouter à celle-ci mais elle est rarement utilisée 
 \left| \int { 1 \over \bar \lambda (R) }
\left(
{d \bar \lambda \over d R }
\right)^2
\right|^2 
\ll 1


La première condition peut s'interpréter, en faisant apparaitre le produit V'(R) \bar \lambda (R) , comme une condition adiabatique, i.e. comme le fait que le potentiel V doit changer lentement sur des distances comparables à longueur d'onde  \bar \lambda de la particule pour que celle-ci ait le temps de s'adapter au nouveau potentiel lors du mouvement.

La seconde condition est plus difficile à interpréter mais elle indique qu'il faut être prudent si le potentiel V décroit trop lentement à l'infini.

Démonstration[modifier | modifier le code]

En faisant apparaître les différents ordres du développement en puissance de  \hbar on pose


\psi(R) = e^{\frac{i}{ \hbar} \left[
\sigma_0 (R) + {\hbar \over i} \sigma_1 (R) + \left(\frac{\hbar}{
i}\right)^2
\sigma_2 (R) + \cdots
\right]}

Ordre 0[modifier | modifier le code]

En n'utilisant que \sigma_0 dans \psi on obtient immédiatement


- {\sigma'}^2_0 (R) + i \hbar \sigma''_0 (R) + p^2(R) = 0


L'ordre 0, qui s'appelle l'approximation classique, consiste à ne conserver aucun terme en \hbar. On obtient  \sigma_0(R) = \pm \int p et donc

 \psi (R) \approx e^{ \frac{i}{  \hbar} \pm \int p }

Ordre 1[modifier | modifier le code]

L'ordre suivant est l'approximation B.K.W. proprement dite.

En reprenant la formule précédente, avec \sigma_0 + \frac{\hbar}{i}
\sigma_1 au lieu de  \sigma_0 , et en ne gardant que les termes en  \hbar on obtient immédiatement  2 \sigma'_0 \sigma'_1 + \sigma''_0 = 0

En utilisant la valeur de \sigma_0 (R) =\pm \int p(R), on en déduit \sigma_1 (R) = cte - \frac{1}{2} \ln |p(R)| et finalement avec les deux signes possibles de \sigma_0


\psi^{\rm BKW} (R) = {C_1 \over \sqrt{ |p(R) |
 } } e^{ {i \over \hbar} \int
p } + {C_2 \over \sqrt{ |p(R) | } } e^{- {i \over \hbar} \int
p }

Ordre 2[modifier | modifier le code]

Le calcul à l'ordre 2 fournit


\psi (R) = {C'_1 \over \sqrt{ |p(R) | } }
\left[
1 - {i m \hbar \over 4} { F(R) \over p^3(R) } - 
{i m^2 \hbar \over 8}  \int { F^2 \over p^5 } 
\right] 
e^{ {i \over \hbar} \int
p } + {C'_2 \over \sqrt{ |p(R) | } }
\left[
1 + {i m \hbar \over 4} { F(R) \over p^3(R) } + 
{i m^2 \hbar \over 8}  \int { F^2 \over p^5 } 
\right] 
 e^{- {i \over \hbar} \int
p }

 F = - {d V \over d R} désigne la force à laquelle est soumise la particule. Cette formule est rarement utilisée, mais en comparant avec la formule BKW, on voit que l'approximation BKW sera valide dans le cas où  \left| { m \hbar F(R) \over p^3(R) }\right| \ll 4 et \left|  m^2 \hbar  \int { F^2(R) \over p^5(R) } \right|  \ll 8

On préfère souvent réécrire ces conditions en utilisant  F = p p' / m ce qui amène aux conditions données précédemment qui sont :


\left|
{d \bar \lambda \over d R }
\right|  \ll  4  \hbox{ et } 
 \left| \int { 1 \over \bar \lambda (R) }
\left(
{d \bar \lambda \over d R }
\right)^2
\right|^2 
\ll 4/\pi

Cas des points tournants classiques (vitesse nulle)[modifier | modifier le code]

Les points où  p(R)=0 sont appelés les points de retournements classiques, en effet la vitesse v=p/m y est nulle, le mobile (ou la particule) fera demi-tour. En ces points la première condition n'est plus valable et l'approximation BKW est totalement fausse et il est donc nécessaire d'effectuer un traitement spécial pour ces points.

Au voisinage d'un tel point  R_C on peut écrire un développement limité du potentiel. En s'arrêtant au premier ordre où  V(R) \approx E - (R -R_C) F_C  l'équation de Schrödinger devient une équation d'Airy dont la solution est donnée par  \psi (R) = C_A {\rm Ai} \left[
\left( R_C- R 
\right) \left( 
{ 2 m F_C \over \hbar^2} 
\right)^{1/3} \right]

Fonctions de connexions[modifier | modifier le code]

En utilisant les développements asymptotiques de la fonction d'Airy il est possible de les raccorder aux fonctions BKW de part et d'autre d'un point tournant.

Les raccordements de deux fonctions BKW s'ensuivent et sont donnés par les lois suivantes.

  1. La fonction {C \over 2  \sqrt{ |p(R) | } } e^{ - {1 \over \hbar} 
\left| \int_{R_C}^R
p(R') d R' \right| } dans la région V(R) > E devient {C \over \sqrt{ p(R)  } } \cos\left(
 {1 \over \hbar} \left| \int_{R_C}^R
p(R') d R' \right| -{\pi\over 4} \right) dans la région V(R) < E
  2. La fonction {C \over \sqrt{ p(R)  } } 
 e^{  {i \over \hbar} 
\left| \int_{R_C}^R
p(R') d R' \right| + { i \pi \over 4} } dans la région V(R) < E devient  {C \over \sqrt{ |p(R) | } } e^{  {1 \over \hbar} 
\left| \int_{R_C}^R
p(R') d R' \right| } dans la région V(R) > E

Signalons qu'il est préférable de ne pas extrapoler d'autres formules car les termes exponentiellement croissant et exponentiellement décroissant ne peuvent en général coexister dans la région classiquement interdite.

Approximation semi-classique uniforme[modifier | modifier le code]

Notons aussi la formule de l'approximation semi-classique uniforme (ASU) valable dans toutes les régions, donnée par:


\psi^{\rm ASU} (R) = {C_4 \over \pi} \left[
{3 \hbar^2 \int_{R_C}^R p \over 2 p^3}
\right]^{1/6}
{\rm Ai}\left[
\left(
{3 \int_{R_C}^R p \over 2 \hbar }
\right)^{2/3}
\right]

États liés[modifier | modifier le code]

L'une des applications les plus importantes de la théorie BKW concerne le calcul des fonctions d'onde dans un puits de potentiel.

En notant R_{\rm int} le point tournant classique interne et R_{\rm ext} le point externe et en utilisant les formules de connexions en ces deux points on s'aperçoit facilement que la somme des phases des cosinus doit être un multiple de π. On en déduit la condition de quantification, qui est en fait celle trouvée par Niels Bohr et Arnold Sommerfeld en 1913 dans l'ancienne théorie des quanta mais avec le 1/2 en plus 
{ 1 \over \pi \hbar } \int_{R_{\rm int}}^{R_{\rm ext} }
 p(R) d R = v + {1 \over 2} v est le nombre de zéro de la fonction d'onde ψ du v+1 ème niveau lié du potentiel (théorème d'oscillation). L'approximation BKW s'écrit


\psi (R)   =  \sqrt{ 2 \omega m \over \pi p(R) }
\cos\left(
 {1 \over \hbar} \int_{R_{\rm int}}^R
p(R') d R'  -{\pi\over 4}\right)

où l'on a normalisé à la fonction d'onde en négligeant la partie classiquement interdite et utilisant l'approximation de l'oscillation rapide du cosinus (\cos^2 \approx 1/2).

ω désigne la pulsation du mouvement classique et T est la période d'oscillation définies par 
\omega = {2 \pi \over T} =
{2 \pi \over 2 m \int_{R_{\rm int}}^{R_{\rm ext} } p^{-1} (R) d
R}

Plus v est grand, plus p l'est, et donc plus l'approximation BKW sera valable (voir la première condition de validité). Il convient tout de même d'être soigneux pour les tout derniers niveaux du potentiel, car l'approximation BKW n'est plus valable (voir la deuxième condition de validité).

Annexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Ouvrages d'introduction pour physicien[modifier | modifier le code]

Aspects récents[modifier | modifier le code]

  • Harald Siegfried Friedrich ; Theoretical Atomic Physics, Springer; 3 edition (October 6, 2005), ISBN 978-3-540-25644-1
  • André Voros ; Spectre de l'équation de Schrödinger et méthode BKW, notes de cours (Orsay - 1980/1981), Publications Mathématiques de l'Université Paris-Sud Orsay 81-09 (1981). pdf.
  • André Voros ; De la théorie BKW exacte vers la théorie des perturbations singulières (II), AOKI T., KOIKE T., MAJIMA H., TAKEI Y., TOSE N., eds. (Springer-Verlag, Berlin) International Conference on Algebraic Analysis of Differential Equations (from Microlocal Analysis to Exponential Asymptotics), in honor of Prof. Takahiro Kawai on the occasion of his sixtieth birthday (invitation), Kyoto University, Kyoto, Japan, July 7-14 2005. ArXiv : math-ph/0603043.

Articles connexes[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. Léon Brillouin La mécanique ondulatoire de Schrödinger; une méthode générale de résolution par approximations successives, Comptes rendus (Paris) 183 24-26 (1926)
  2. H. A. Kramers Wellenmechanik und halbzahlige Quantisierung, Z. Physik. 39 828-840 (1926)
  3. Gregor Wentzel Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik, Z. Physik. 38 518-529 (1926).