Optique géométrique

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

L’optique géométrique est une branche de l'optique qui s'appuie notamment sur la notion de rayon lumineux. Cette approche simple permet notamment des constructions géométriques d'images qui lui confèrent son nom. L'optique géométrique constitue l'outil le plus flexible et le plus efficace pour traiter les systèmes dioptriques et catadioptriques. Elle permet notamment d'expliquer la formation des images produites par ces systèmes.

Historique[modifier | modifier le code]

Du point de vue physique, l'optique géométrique est une approche alternative de l'optique ondulatoire (souvent appelée optique physique) et de l'optique quantique. Elle est en revanche plus ancienne, ayant été développée dès l'antiquité. L'optique ondulatoire a été mise en évidence au XIXe siècle avec l'expérience des fentes d'Young et l'optique quantique n'est apparue qu'au cours du XXe siècle.

Propagation de la lumière[modifier | modifier le code]

Le rayon lumineux[modifier | modifier le code]

Un rayon lumineux est un objet théorique : il n'a pas d'existence physique. Il sert de modèle de base à l'optique géométrique où tout faisceau de lumière est représenté par un ensemble de rayons lumineux. Le rayon lumineux est l'approximation de la direction de propagation de l'onde lumineuse ou des photons.

Lorsque l'on considère l'onde lumineuse, si la surface d'onde est un plan, tous les rayons sont parallèles entre eux et si la surface d'onde est sphérique, tous les rayons se dirigent vers un point, ou semblent provenir d'un point : on a un faisceau qui converge en un point, ou qui diverge à partir d'un point.

Le chemin optique[modifier | modifier le code]

Lois de l'optique géométrique[modifier | modifier le code]

Deux grands principes ont fondé l'optique géométrique :

  • le principe de Fermat qui énonce que le trajet de la lumière est toujours un extremum, donc que le rayon lumineux passera toujours par le trajet le plus court ou le plus long ;
  • le principe du retour inverse de la lumière énonçant que le trajet d'un rayon lumineux peut être parcouru dans les deux sens.
Schéma avec des rayons incidents, réfléchis et réfractés en rouge, et un milieu bleu dans lequel on voit le rayon réfracté.
La réfraction en optique géométrique sur un dioptre plan, dans le cas où n2<n1.

Ces principes ont été découverts tardivement comparé à la loi de la réflexion. La loi de la réfraction est arrivée plus tard. Réflexion et réfraction sont gouvernées par les lois de Snell-Descartes. Le phénomène de réfraction limite et de réflexion totale ne seront trouvés que plus tard.

Toutes ces lois, furent expliquées par la suite grâce à l'optique physique.

Limite de l'optique géométrique[modifier | modifier le code]

L'optique géométrique ne permet pas d'expliquer tous les phénomènes lumineux. En particulier, elle ne tient pas compte du fait que la lumière est de nature ondulatoire ou corpusculaire. Lorsque tous les objets qui interagissent avec la lumière ont des tailles caractéristiques grandes devant la longueur d'onde du rayon lumineux alors il est convenable et plus simple d'utiliser l'optique géométrique pour décrire son comportement avec une bonne précision. Mais quand la lumière diffuse ou passe à travers des objets dont la taille est du même ordre de grandeur (voire plus petits) que sa longueur d'onde, alors il n'est plus possible de négliger l'aspect ondulatoire et on entre dans le domaine de l'optique physique.

Deux phénomènes caractéristiques de l'optique ondulatoire, inexplicables dans le contexte de l'optique géométrique, sont les interférences lumineuses et la diffraction.

Notes et références[modifier | modifier le code]

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Liens externes[modifier | modifier le code]