Aller au contenu

Application identité

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 1 mars 2021 à 17:55 et modifiée en dernier par Ambigraphe (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

En mathématiques, sur un ensemble X donné, l'application identité ou la fonction identité est l'application qui n'a aucun effet lorsqu'elle est appliquée à un élément : elle renvoie toujours la valeur qui est utilisée comme argument. Formellement, c'est l'application

Le graphe de l'application identité est appelé la diagonale du produit cartésien X×X. Pour X égal à l'ensemble des réels, ce graphe est la première bissectrice du plan euclidien.

Notations

L'application idX est aussi notée IdX. Quand il n'y a pas d'ambiguïté sur l'ensemble X sur lequel on travaille, on la note id ou Id.

Elle est parfois notée 1X, mais cette dernière notation peut prêter à confusion avec la fonction indicatrice d'une partie X d'un ensemble.

Propriétés remarquables

Pour toute application f d'un ensemble X dans un ensemble Y, on a :

En particulier, l'application identité est l'élément neutre du monoïde des applications de X dans lui-même (muni de la composition de fonctions), et du groupe symétrique de X (le groupe des bijections de X dans lui-même).

En algèbre linéaire

Si E est un espace vectoriel, alors IdE est une application linéaire et son déterminant vaut 1.

Si X est un espace vectoriel de dimension finie n, alors la matrice représentant IdX est la matrice unité In.

En topologie

L'application identité permet de comparer deux topologies : sur X, une topologie τ2 est plus fine qu'une topologie τ1 lorsque idX est continue de (X, τ2) dans (X, τ1).