Application identité

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant l’analyse
Cet article est une ébauche concernant l’analyse.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Page d'aide sur l'homonymie Pour les articles homonymes, voir Identité.

En mathématiques, sur un ensemble X donné, l'application identité ou la fonction identité est l'application qui n'a aucun effet lorsqu'elle est appliquée à un élément : elle renvoie toujours la valeur qui est utilisée comme argument. Formellement, c'est l'application

Le graphe de l'application identité est appelé la diagonale du produit cartésien X×X. Pour X égal à l'ensemble des réels, ce graphe est la première bissectrice du plan euclidien.

Notations[modifier | modifier le code]

L'application idX est aussi notée IdX. Quand il n'y a pas d'ambiguïté sur l'ensemble X sur lequel on travaille, on la note id ou Id.

Elle est parfois notée 1X, mais cette dernière notation peut prêter à confusion avec la fonction indicatrice d'une partie X d'un ensemble.

Propriétés remarquables[modifier | modifier le code]

Pour toute application f d'un ensemble X dans un ensemble Y, on a :

En particulier, l'application identité est l'élément neutre du monoïde des applications de X dans lui-même (muni de la composition de fonctions), et du groupe symétrique de X (le groupe des bijections de X dans lui-même).

En topologie[modifier | modifier le code]

L'application identité permet de comparer deux topologies : sur X, une topologie τ2 est plus fine qu'une topologie τ1 lorsque idX est continue de (X, τ2) dans (X, τ1).