Aller au contenu

« Électrolyse à oxyde solide » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Création de la page.
(Aucune différence)

Version du 10 mai 2021 à 22:30

Module expérimental de deux piles de 60 cellules d'électrolyse visibles au centre, installé avec ses alimentations et ses conduits[1].

L'électrolyse à oxyde solide est un procédé d'électrolyse de l'eau H2O ou du dioxyde de carbone[2] CO2 à l'aide d'électrolytes constitués d'oxydes solides, c'est-à-dire de céramiques, afin de produire de l'oxygène O2 et de l'hydrogène H2 ou du monoxyde de carbone CO, selon les réactions 2 H2O ⟶ 2 H2 + O2 et 2 CO2 ⟶ 2 CO + O2 respectivement. La production d'hydrogène par cette voie est intéressante car d'empreinte écologique réduite et offrant un moyen de stockage de l'énergie alternatif aux accumulateurs[3]. En ce premier tiers du 21e siècle, l'électrolyse reste la méthode la plus prometteuse pour la production d'hydrogène à partir de l'eau en raison de son efficacité élevée et de ses besoins énergétiques modérés en comparaison des procédés thermochimiques et photocatalytiques[4]. La seconde réaction est intéressante notamment dans le cadre de l'exploration spatiale, par exemple pour fournir de l'oxygène à des systèmes de support de vie ou pour produire les propergols nécessaire au retour sur Terre par utilisation des ressources in situ pour une mission habitée vers Mars[5], l'atmosphère martienne étant constituée à 95 % de CO2.

Principe et fonctionnement appliqués à l'électrolyse de l'eau

L'électrolyse à oxyde solide requiert des températures compatibles avec l'électrolyse à haute température[6], généralement comprises entre 500 et 850 °C. Ce sont des températures semblables à celles nécessaires au fonctionnement des piles à combustible à oxyde solide. Les réactions nettes pour une mole d'eau H2O sont indiquées ci-dessous, la réduction de l'eau H2O en hydrogène H2 intervenant à la cathode et l'oxydation en oxygène O2 intervenant à l'anode :

2 H2O + 4 e ⟶ 2 O2– + 2 H2↑ à la cathode (réduction) ;
2 O2– ⟶ 4 e + O2↑ à l'anode (oxydation).

L'électrolyse de l'eau à 25 °C consomme au moins 285,83 kJ/mol[7] et devient de plus en plus endothermique lorsque la température augmente. Une partie de la chaleur peut être apportée par effet Joule au cours de l'électrolyse à haute température. Des études examinent la possibilité de faire intervenir des capteurs solaires thermiques ou des sources géothermiques[8].

Le rôle d'un électrolyseur est de cliver la vapeur d'eau en hydrogène et oxygène. La vapeur diffuse à travers la cathode poreuse. L'application d'une tension électrique entre les électrodes fait circuler la vapeur jusqu'à l'interface entre la cathode et l'électrolyte, au niveau de laquelle les molécules d'eau H2O sont clivées en hydrogène H2 et anions oxyde O2–, ces derniers provenant de la réduction des atomes d'oxygène par deux électrons chacun. L'hydrogène diffuse à rebours à travers la cathode et est récupéré à sa surface pour être stocké tandis que les anions oxyde circulent à travers l'électrolyte : ce dernier doit être suffisamment dense pour bloquer la diffusion de la vapeur d'eau et de l'hydrogène à travers lui, ce qui conduirait à la recombinaison de l'hydrogène avec l'oxygène pour redonner de l'eau, annulant la réaction ; parvenus au niveau de l'interface entre l'électrolyte et l'anode, les anions oxyde sont oxydés en cédant à l'anode deux électrons chacun, ce qui redonne des atomes d'oxygène neutres, qui se recombinent pour former de l'oxygène, récupéré à la surface de l'anode pour être stocké[4].

Matériaux

Les cellules à électrolyse à oxyde solide sont bâties sur le modèle des piles à combustibles à oxyde solide, avec une cathode côté combustible, une anode côté oxygène, et un électrolyte en céramique.

Cathode

Le matériau le plus couramment employé pour les cathodes de cellules d'électrolyse à oxyde solide est la zircone stabilisée à l'oxyde d'yttrium dopée au nickel, ou Ni:YSZ. Les propriétés catalytiques de ce matériau sont cependant dégradées par l'oxydation du nickel consécutif à la pression partielle élevée en vapeur d'eau et à faible ression partielle d'hydrogène[9]. Une pérovskite telle que le manganite de lanthane dopé au strontium (LSM) La1−xSrxMnO3 est également couramment employée comme cathode[10]. On a montré que le dopage du LSM au scandium pour former du LSMS La1−xSrxMn1−yScyO3−δ favorise la mobilité des anions oxyde O2– dans la cathode en introduisant des lacunes d'oxygène, augmentant la cinétique de réduction à l'interface avec l'électrolyte et améliorant ainsi les performances à basse température ; les paramètres de frittage doivent cependant être ajustés pour limiter la précipitation d'oxyde de scandium Sc2O3 dans la structure cristalline de la pérovskite, ce qui réduit la mobilité des électrons et des anions oxyde dans le matériau[11]. D'autres matériaux sont également étudiés, comme les LSCM, qui contiennent du chrome et sont plus stables en conditions moins réductrices, c'est-à-dire avec une pression partielle en hydrogène pH2 faible ou nulle[12], ou les LSCMS, avec du scandium, qui présentent une conductivité ionique élevée malgré leur coût en raison du scandium et offrent une efficacité élevée à des températures de seulement 700 °C[13].

Électrolyte

Comme pour les piles à combustible à oxyde solide, l'électrolyte le plus couramment employé dans les cellules d'électrolyse à oxyde solide est la zircone stabilisée à l'oxyde d'yttrium à 8 % molaires, généralement écrite 8YSZ. La zircone ZrO2 est utilisée en raison de sa résistance mécanique élevée, de son point de fusion élevé et de sa très bonne résistance à la corrosion. L'oxyde d'yttrium(III) Y2O3 est introduit pour stabiliser la phase tétragonale à température ambiante, là où la zircone présente normalement une structure cristalline monoclinique : cette transition de phase s'accompagne de changements de volume importants qui génèrent des contraintes mécaniques au niveau des joints de grains, lesquelles font apparaître des fissures qui dispersent les porteurs et dégradent les propriétés générales du matériau[14]. Outre le 8YSZ, on trouve également des électrolytes en zircone stabilisée à l'oxyde de scandium Sc2O3 (ScSZ), des électrolytes à base de cérium ou encore des matériaux à base de gallate de lanthane. Les conditions de fonctionnement d'une cellule d'électrolyse sont différentes de celles d'une pile à combustible, ce qui peut faire apparaître des problèmes comme une concentration de vapeur élevée au niveau de la cathode et des pressions partielles d'oxygène pO2 élevées à l'interface entre l'électrolyte et l'anode[9]. On a pu montrer que le fait d'alterner le fonctionnement d'une cellule entre électrolyse et pile à combustible a pour effet de réduire l'accumulation de pression partielle d'oxygène et augmente sensiblement la durée de vie de la cellule d'électrolyse[15].

Anode

Le manganite de lanthane dopé au strontium (LSM) La1−xSrxMnO3 est le matériau le plus couramment employé comme anode de cellule d'électrolyse à oxyde solide. Il est efficace en condition d'électrolyse parce qu'il se forme des lacunes d'oxygène dans sa structure cristalline pérovskite sous l'effet de la polarisation anodique, lacunes qui facilitent la diffusion de l'oxygène[16]. De plus, le fait d'imprégner le LSM avec des nanoparticules d'oxyde de cérium dopé au gadolinium (GDC) Gd:CeO2 augmente la durée de vie des cellules en limitant le délaminage de l'anode d'avec l'électrolyte[17]. Le nickelate de néodyme Nd2NiO4+δ intégré à une cellule d'électrolyse à oxyde solide commerciale permet 1,7 fois la densité de courant des anodes LSM typiques en fonctionnant à 700 °C, et jusqu'à 4 fois en fonctionnant à 800 °C ; on pense que l'augmentation des performances de ce matériau résulte de sa « sur-stœchiométrie » en oxygène qui en fait un meilleur conducteur à la fois des électrons et des anions oxyde O2–[18].

Notes et références

  1. (en) J.J. Hartvigsen, S. Elangovan et A. Nickens, « 2007 DOE Hydrogen Program Review — Test of High Temperature Electrolysis ILS Half Module » [PDF], sur https://www.hydrogen.energy.gov/, DoE, (consulté le ).
  2. (en) Yun Zheng, Jianchen Wang, Bo Yu, Wenqiang Zhang, Jing Chen, Jinli Qiao et Jiujun Zhang, « A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology », Chemical Society Reviews, vol. 46, no 5,‎ , p. 1427-1463 (PMID 28165079, DOI 10.1039/c6cs00403b, lire en ligne)
  3. (en) Meng Ni, Michael K. H. Leung, Dennis Y. C. Leung et K. Sumathy, « A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production », Renewable and Sustainable Energy Reviews, vol. 11, no 3,‎ , p. 401-425 (DOI 10.1016/j.rser.2005.01.009, lire en ligne)
  4. a et b (en) Meng Ni, Michael K. H. Leung et Dennis Y. C. Leung, « Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) », International Journal of Hydrogen Energy, vol. 33, no 9,‎ , p. 2337-2354 (DOI 10.1016/j.ijhydene.2008.02.048, lire en ligne)
  5. (en) Karen Fox, Alana Johnson, Clare Skelly et Andrew Good, « NASA’s Perseverance Mars Rover Extracts First Oxygen from Red Planet », sur https://www.nasa.gov/, NASA, (consulté le ).
  6. (en) Greg Tao et Anil Virka, « II.A.2 A Reversible Planar Solid Oxide Fuel-Assisted Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biogas » [PDF], sur https://www.hydrogen.energy.gov/, DoE, (consulté le ).
  7. (en) « Electrolysis of Water », sur http://hyperphysics.phy-astr.gsu.edu/, Département de physique et d'astronomie de l'université d'État de Géorgie (consulté le ).
  8. (en) J. Sigurvinsson, C. Mansilla, P. Lovera et F. Werkoff, « Can high temperature steam electrolysis function with geothermal heat? », International Journal of Hydrogen Energy, vol. 32, no 9,‎ , p. 1174-1182 (DOI 10.1016/j.ijhydene.2006.11.026, lire en ligne)
  9. a et b (en) M. A. Laguna-Bercero, « Recent advances in high temperature electrolysis using solid oxide fuel cells: A review », Journal of Power Sources, vol. 203,‎ , p. 4-16 (DOI 10.1016/j.jpowsour.2011.12.019, lire en ligne)
  10. (en) San Ping Jiang, « Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review », Journal of Materials Science, vol. 43, no 21,‎ , p. 6799-6833 (DOI 10.1007/s10853-008-2966-6, Bibcode 2008JMatS..43.6799J, lire en ligne)
  11. (en) Xiangling Yue, Aiyu Yan, Min Zhang, Lin Liu, Yonglai Dong et Mojie Cheng, « Investigation on scandium-doped manganate La0.8Sr0.2Mn1−xScxO3−δ cathode for intermediate temperature solid oxide fuel cells », Journal of Power Sources, vol. 185, no 2,‎ , p. 691-697 (DOI 10.1016/j.jpowsour.2008.08.038, Bibcode 2008JPS...185..691Y, lire en ligne)
  12. (en) Xuedi Yanga et John T. S. Irvine, « (La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam », Journal of Materials Chemistry, vol. 18, no 20,‎ , p. 2349-2354 (DOI 10.1039/B800163D, lire en ligne)
  13. (en) Shigang Chen, Kui Xie, Dehua Dong, Huaxin Li, Qingqing Qin, Yong Zhang et Yucheng Wu, « A composite cathode based on scandium-doped chromate for direct high-temperature steam electrolysis in a symmetric solid oxide electrolyzer », Journal of Power Sources, vol. 274,‎ , p. 718-729 (DOI 10.1016/j.jpowsour.2014.10.103, Bibcode 2015JPS...274..718C, lire en ligne)
  14. (en) M. H. Bocanegra-Bernal et S. Díaz de la Torre, « Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics », Journal of Materials Science, vol. 37, no 23,‎ , p. 4947-4971 (DOI 10.1023/A:1021099308957, lire en ligne)
  15. (en) Christopher Graves, Sune Dalgaard Ebbesen, Søren Højgaard Jensen, Søren Bredmose Simonsen et Mogens Bjerg Mogensen, « Eliminating degradation in solid oxide electrochemical cells by reversible operation », Nature Materials, vol. 14, no 2,‎ , p. 239-244 (PMID 25532070, DOI 10.1038/nmat4165, Bibcode 2015NatMa..14..239G, lire en ligne)
  16. (en) Wei Wang et San Ping Jiang, « A mechanistic study on the activation process of (La, Sr)MnO3 electrodes of solid oxide fuel cells », Solid State Ionics, vol. 177, nos 15-16,‎ , p. 1361-1369 (DOI 10.1016/j.ssi.2006.05.022, lire en ligne)
  17. (en) Kongfa Chen, Na Ai et San Ping Jiang, « Development of ( Gd , Ce )O2-Impregnated ( La , Sr ) MnO3 Anodes of High Temperature Solid Oxide Electrolysis Cells », Journal of The Electrochemical Society, vol. 157, no 11,‎ , p. 89-94 (DOI 10.1149/1.3481436/meta, lire en ligne)
  18. (en) F. Chauveau, J. Mougin, J. M. Bassat, F. Mauvy et J. C. Grenier, « A new anode material for solid oxide electrolyser: The neodymium nickelate Nd2NiO4+δ », Journal of Power Sources, vol. 195, no 3,‎ , p. 744-749 (DOI 10.1016/j.jpowsour.2009.08.003, Bibcode 2010JPS...195..744C, lire en ligne)