Vitesse de frottement

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

La vitesse de frottement (ou vitesse de friction) est une formulation pour laquelle la contrainte de cisaillement est exprimée dans les unités d'une vitesse. En tant que méthode, il est utile en mécanique des fluides de comparer des vitesses réelles comme la vitesse d'écoulement d'un fluide avec la vitesse en relation des différentes couches d'un écoulement.

La vitesse de frottement est utilisée pour décrire les champs de vitesse liés au cisaillement dans un fluide en mouvement. Elle est utilisée pour décrire :

  • La diffusion et la dispersion de particules, traçants et contamininats lors découlements
  • Le profil de vitesse à proximité de la limite
  • Le transport de sédiments dans un canal.

La vitesse de frottement aide aussi à évaluer le taux de cisaillement et de dispersion dans un écoulement. La vitesse de frottement permet d'évaluer les taux de dispersion et de dépôt de sédiments. En règle générale, la vitesse de frottement est égale à 1/10 de vitesse d'écoulement.

est la contrainte de cisaillement à n'importe quel niveau de l'écoulement et est la masse volumique du fluide.

Transport de sédiments[modifier | modifier le code]

Typiquement, pour les transports de sédiments, la vitesse de frottement est évaluée au niveau du fond d'un canal.

est la contrainte de cisaillement à la limite.

La vitesse de cisaillement peut aussi être définie en fonction de la vitesse locale et des champs de contraintes de cisaillement.

Météorologie[modifier | modifier le code]

Dans un médium turbulent, on définit le vecteur de contraintes de cisaillement comme suit :

ρ est la masse volumique du fluide et , et sont les déviations de la vitesse par rapport à la moyenne suivant les 3 axes x, y, z.

La vitesse de frottement est alors définie à partir du tenseur de covariance des vitesses comme suit[1] :

Basé sur un profil de vent logarithmique et l'hypothèse de Ludwig Prandtl, on suppose que le vent moyen est parallèle à l'axe x et donc que et donc . Par conséquent,

On utilisant une similitude avec la traînée aérodynamique, on peut aussi écrire que :

est le coefficient de traînée. Au-dessus d'un lac, le coefficient de traînée est 0,0012 tandis qu'au-dessus de la végétation, le coefficient de traînée est de l'ordre de 0,1 à 0,2[2].

Si l'on connaît le coefficient de traînée, on peut en déduire la vitesse de frottement comme étant :

Références[modifier | modifier le code]

  1. (en)Roland Stull, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, , 670 p. (ISBN 9027727694), p. 67
  2. (en)Dennis Baldocchi, « Lecture 17, Wind and Turbulence, Part 2, Surface Boundary Layer: Theory and Principles » (consulté le 13 juin 2016), p. 12

Bibliographie[modifier | modifier le code]

Whipple, K. X (2004), III: Flow Around Bends: Meander Evolution, 12.163 Course Notes, MIT. http://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-163-surface-processes-and-landscape-evolution-fall-2004/lecture-notes/3_flow_around_bends.pdf