Phytochrome

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

Un phytochrome est un photorécepteur présent chez toutes les plantes terrestres, des algues streptophytes, des cyanobactéries et autres bactéries, des mycètes et diatomées[1].

Structure[modifier | modifier le code]

Structure cristalline du Phytochrome bactérien (dimère)[2].

Il s'agit d'une chromoprotéine dimérique constituée de deux apoprotéines d'environ 125 kDa, chacune associée un groupement prosthétique, le chromophore[1]. Ce dernier est un tétrapyrrole linéaire, appelé phytochromobiline chez les angiospermes[1].

5 isoformes (phyA-phyE) codées par 5 gènes différents ont été décrits chez Arabidopsis thaliana, chacun ayant un rôle spécifique pour le développement de la plante[1].

Synthèse[modifier | modifier le code]

Le chromophore est synthétisé dans les plastes, via une voie métabolique liée à la synthèse de la chlorophylle[1]. Il est ensuite exporté vers le cytosol, où il s'associe avec l'apoprotéine au niveau d'un résidu Cys (lien thioester)[1].

Fonctionnement et signalisation[modifier | modifier le code]

Photoréversibilité[modifier | modifier le code]

Le phytochrome existe sous deux formes. La transition d'une forme à l'autre est provoquée par la longueur d'onde perçue (photoréversibilité) :

  • Pr (pour "red") : la forme inactive, dont le maximum d'absorption se situe à 660 nm (rouge).
  • Pfr (pour "far red") : la forme active, dont le pic d'absorption se situe à 720 nm (rouge lointain).

Dans la conformation Pfr, un domaine possédant une activité de localisation nucléaire est actif, celui-ci étant inhibé dans l'état Pr[3]. La protéine migre alors vers le noyau, où elle interagit avec des facteurs de transcription, induisant une réponse transcriptionnelle[1]. Il peut également agir dans le cytosol.

Mode d'action[modifier | modifier le code]

phyA et phyB sont les isoformes les plus actifs chez Arabidopsis et dont le mode d'action est le mieux connu. Les phytochromes dans la conformation Pr passent sous la forme Pfr sous irradiation rouge (620-700 nm)[1]. Ce changement de conformation s'effectue à partir du chromophore. L'isomérisation cis-trans d'une double liaison dans celui-ci modifie les interactions non covalentes autour du chromophore, induisant des changement importants au niveau de la structure tridimensionnelle de la protéine[4]. Sous une lumière rouge lointaine (710-850 nm), le processus est réversible pour phyB alors qu'une petite fraction des phyA (3%) reste sous forme Pfr, pouvant continuer à agir dans le noyau[1]. Dès lors, on considère que phyB régule la photomorphogenèse sous la lumière rouge alors que phyA la régule sous le rouge lointain[5].

(L'ordre de grandeur de l'énergie requise aux réactions commandées par le phytochrome est relativement faible : de 20 à 100 W m−2 (pour situer l'ordre de grandeur, le Soleil donne 1 340 W/m2))[réf. souhaitée].

Rôles des phytochromes[modifier | modifier le code]

Les phytochromes contrôlent plusieurs processus :

Il est aussi à noter que le phytochrome régule aussi la synthèse de son propre messager !

Les phytochromes interviennent dans la synthèse de la chlorophylle, des flavones ainsi que des bétacyanines, en outre, ils stimulent la fabrication de caroténoïdes. Ils ont également un effet sur le taux de croissance des tissus.

Article connexe[modifier | modifier le code]

Références[modifier | modifier le code]

  1. a b c d e f g h et i (en) Lincoln Taiz, Eduardo Zeiger, Ian Max Møller et Angus Murphy, Plant physiology and development, Sunderland, Sinauer Associates, , 762 p. (ISBN 9781605352558, OCLC 889005820, lire en ligne), p. 452-462
  2. PDB 3G6O; Yang X, Kuk J, Moffat K, « Crystal structure of P. aeruginosa bacteriaphytochrome PaBphP photosensory core domain mutant Q188L », Proc.Natl.Acad.Sci.USA, vol. 106,‎ , p. 15639–15644 (PMID 1972099, DOI 10.2210/pdb3g6o/pdb)
  3. (en) Akira Nagatani, « Light-regulated nuclear localization of phytochromes », Current Opinion in Plant Biology, vol. 7, no 6,‎ , p. 708–711 (DOI 10.1016/j.pbi.2004.09.010, lire en ligne)
  4. (en) Andrew T Ulijasz et Richard D Vierstra, « Phytochrome structure and photochemistry: recent advances toward a complete molecular picture », Current Opinion in Plant Biology, vol. 14, no 5,‎ , p. 498–506 (DOI 10.1016/j.pbi.2011.06.002, lire en ligne)
  5. (en) Xue-Dan Lu, Chuan-Miao Zhou, Peng-Bo Xu et Qian Luo, « Red-Light-Dependent Interaction of phyB with SPA1 Promotes COP1–SPA1 Dissociation and Photomorphogenic Development in Arabidopsis », Molecular Plant, vol. 8, no 3,‎ , p. 467–478 (DOI 10.1016/j.molp.2014.11.025, lire en ligne)
  6. a et b (en) J. J. Casal, R. A. Sanchez et J. F. Botto, « Modes of action of phytochromes », Journal of Experimental Botany, vol. 49, no 319,‎ , p. 127–138 (DOI 10.1093/jxb/49.319.127, lire en ligne)