1 + 2 + 3 + 4 + ⋯

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

1 + 2 + 3 + 4 + ⋯, la série des entiers strictement positifs pris dans l'ordre croissant, est en analyse une série divergente.

La n-ième somme partielle de cette série est le nombre triangulaire :

.

La suite de ces sommes partielles est croissante et non majorée donc tend vers l'infini.

Bien que cette série ne possède donc a priori pas de valeur significative, elle peut être manipulée pour produire un certain nombre de résultats mathématiquement intéressants, dont certains ont des applications dans d'autres domaines, comme l'analyse complexe, la théorie quantique des champs, la théorie des cordes ou encore l'effet Casimir.

Définition[modifier | modifier le code]

La série a pour terme général . Sa n-ième somme partielle est donc le nombre triangulaire , égal à n(n + 1)/2. La suite tend vers l'infini : la série n'est donc pas convergente. Elle ne possède donc pas de somme au sens usuel du terme. Elle n'est pas non plus sommable au sens de Cesàro.

À la différence de son homologue la série alternée des entiers 1 – 2 + 3 – 4 + …, la série 1 + 2 + 3 + 4 + … n'est pas sommable au sens d'Abel et des méthodes plus avancées sont nécessaires pour lui attribuer une valeur. La valeur qu'on lui donne est –1/12[1](voir infra).

Sommabilité[modifier | modifier le code]

Heuristique[modifier | modifier le code]

Carnet de Ramanujan[modifier | modifier le code]

Passage du premier carnet de Ramanujan[2].

Srinivasa Ramanujan présente deux démonstrations de « 1 + 2 + 3 + 4 + ⋯ = −1/12 » au chapitre 8 de son premier carnet[2],[3],[4]. La démonstration la plus simple n'est pas rigoureuse, mais permet néanmoins d'obtenir une idée de la sommation à obtenir.

Quelle que soit la « somme » de la série, appelons-la c = 1 + 2 + 3 + 4 + ⋯. En faisant abstraction des contraintes sur les opérations de séries infinies, multiplions-la par 4 et soustrayons le résultat :

La tâche est alors de sommer la série alternée des entiers, ce qui est plus simple car elle ressemble au développement en série entière de la fonction 1/(1 + x)2 pour x = 1, soit :

En divisant les deux côtés par −3, on obtient .

Autre approche[modifier | modifier le code]

Une autre approche, là encore non-rigoureuse, permet de se faire simplement une idée d'une valeur possible pour la série. Elle consiste entre autres à abandonner les contraintes de stabilité des méthodes de sommation, ainsi que celles sur les opérations terme à terme entre deux séries.

Soient trois sommes distinctes, avec la somme des entiers naturels, telles que :


Déterminons  

Par définition : .

On remarque que , soit .

Donc .


Déterminons  

Par définition : .

On remarque que

Donc .


Déterminons , la somme des entiers naturels 

Par définition : .

On remarque que , soit .

Donc

D'où .

Régularisation zêta[modifier | modifier le code]

La série peut être sommée par régularisation zêta. Lorsque la partie réelle de s est supérieure à 1, la fonction zêta de Riemann ζ(s) est égale à la somme . Cette somme diverge lorsque la partie réelle de s est inférieure ou égale à 1 ; en particulier, la série 1 + 2 + 3 + 4 + ⋯ qui résulte de s = –1 ne converge pas au sens ordinaire. En revanche, en étendant ζ par prolongement analytique, on trouve .

Une façon de calculer ζ(−1) est d'utiliser la relation entre la fonction zêta de Riemann et la fonction êta de Dirichlet. Lorsque les deux séries de Dirichlet convergent, on a les identités :

L'identité reste valable lorsque les deux fonctions sont étendues par prolongement analytique pour inclure les valeurs de s où les séries divergent. En substituant , on obtient et donc .

Sommation de Ramanujan[modifier | modifier le code]

La sommation de Ramanujan de 1 + 2 + 3 + 4 + ⋯ est également −1/12. Dans la seconde lettre de Ramanujan à Godfrey Harold Hardy, datée du 27 février 1913, il écrit :

« Dear Sir, I am very much gratified on perusing your letter of the 8th February 1913. I was expecting a reply from you similar to the one which a Mathematics Professor at London wrote asking me to study carefully Bromwich's Infinite Series and not fall into the pitfalls of divergent series. … I told him that the sum of an infinite number of terms of the series: 1 + 2 + 3 + 4 + ⋯ = −1/12 under my theory. If I tell you this you will at once point out to me the lunatic asylum as my goal. I dilate on this simply to convince you that you will not be able to follow my methods of proof if I indicate the lines on which I proceed in a single letter. »[5]

soit en français :

« Monsieur, je suis très heureux de lire attentivement votre lettre du 8 février 1913. J'attendais une réponse de vous semblable à celle qu'un professeur de mathématiques à Londres écrivit, m'invitant à étudier soigneusement les Séries Infinies de Thomas John I'Anson Bromwich et à ne pas tomber dans les pièges des séries divergentes. […] Je lui ai dit que la somme d'un nombre infini de termes de la série 1 + 2 + 3 + 4 + ⋯ = −1/12 d'après ma théorie. Si je vous dis cela, vous me direz tout de suite que je suis bon pour l'asile de fous. Je m'étend sur ce sujet simplement pour vous convaincre que vous ne pourrez pas suivre mes méthodes de preuve si je vous indique les lignes sur lesquelles je procède en une seule lettre. »

Le roman de David Leavitt The Indian Clerk (en) inclut une scène où Hardy et Littlewood discutent du sens de ce passage[6].

Limites des méthodes de sommation linéaires stables[modifier | modifier le code]

De nombreuses méthodes de sommations présentées dans l'article Série divergente se basent sur les trois propriétés de stabilité, linéarité et régularité.

Or, il ne peut pas exister de méthode à la fois régulière, stable et linéaire qui soit définie pour la somme des entiers naturels[7],[8], et aucune des méthodes utilisées ci-avant dans l'article pour sommer la série 1 + 2 + 3 + ⋯ ne respecte simultanément ces trois propriétés.

Physique[modifier | modifier le code]

En théorie des cordes bosoniques, on tente de calculer les niveaux d'énergie possible d'une corde, tout particulièrement le niveau d'énergie minimal. De manière informelle, chaque harmonique d'une corde peut être perçue comme une collection de D – 2 oscillateurs harmoniques quantiques indépendants, un pour chaque direction transverse, où D est le nombre de dimensions de l'espace-temps. Si la fréquence fondamentale d'oscillation est , alors l'énergie d'un oscillateur contribuant à la n-ième harmonique est . En utilisant la série divergente, la somme de toutes les harmoniques est . Au bout du compte, c'est ce fait, combiné au théorème de Goddard-Thorn (en), qui conduit la théorie des cordes bosoniques à n'être cohérente qu'en dimension 26.

Un calcul similaire, faisant usage de la fonction zêta d'Epstein (en) au lieu de la fonction zêta de Riemann, est impliqué dans le calcul de la force Casimir[9].

Notes et références[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « 1 + 2 + 3 + 4 + ⋯ » (voir la liste des auteurs).

  1. Hardy 1949, p. 333.
  2. a et b (en) « Chapitre VIII - page 3 », Ramanujan's Notebooks.
  3. (en) Wazir Hasan Abdi, Toils and triumphs of Srinivasa Ramanujan, the man and the mathematician, National, , p. 41.
  4. (en) Bruce C. Berndt, Ramanujan’s Notebooks: Part 1, Springer-Verlag, , p. 135-136.
  5. Berndt, Ramanujan et Rankin 1995, p. 53.
  6. (en) David Leavitt, The Indian Clerk, Bloomsbury, , p. 61-62.
  7. « 1+2+3+4+5+... = -1/12 ??? Infini 5 », sur youtube.com, (consulté le 24 mai 2017)
  8. La somme ne peut être calculée avec une méthode à la fois stable et linéaire car (1+2+3+⋯) - 2*(0+1+2+⋯) + (0+0+1+2+⋯) = 1+0+0+0+⋯ = 1 mais on a aussi (1+2+3+⋯) - 2*(0+1+2+⋯) + (0+0+1+2+⋯) = (1+2+3+⋯) -2*(1+2+3+⋯) + (1+2+3+⋯) = 0 donc 1 = 0
  9. (en) Eberhard Zeidler (de), Quantum Field Theory I: Basics in Mathematics and Physics: A Bridge between Mathematicians and Physicists, Springer, (ISBN 978-3-54034-7644), p. 305-306.

Voir aussi[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]