Aller au contenu

« Utilisateur:Friday83260/Brouillon » : différence entre les versions

Une page de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Nouvel article ! =
Aucun résumé des modifications
Ligne 159 : Ligne 159 :
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
<!-- Dommages causés par les corps étrangers (aéronautique) -->
<!-- Dommages causés par les corps étrangers (aéronautique) -->

Dommages causés par les corps étrangers (aéronautique)
[[Fichier:Mercy-tech-N429MA-fod-060318-01cr-8.jpg|vignette|upright=1.25|Cas typique d'ingestion de débris par un [[turbomoteur]] : Les pales du premier étage de compresseur d'un {{Lien|langue=en|trad=Lycoming LTS101|fr=Lycoming LTS101|texte=LTS101}}, installé sur un Bell 222, après avoir été victimes de l'{{Lien|langue=en|trad=Foreign object damage|fr=Dommages causés par les corps étrangers (aéronautique)|texte=ingestion}} d'un boulon qui n'avait pas été arrêté par la grille de protection d'entrée d'air. Les dégâts sont bien visibles et surtout importants.]]
En aéronautique, un '''corps étranger''' désigne tout type de substance, de débris ou d'élément, mécanique ou non, étant totalement étranger à un aéronef ou un système mais pouvant lui causer des dommages.
[[Fichier:PT6T-FOD-screens.jpg|vignette|upright=1.25|Système de déflexion des débris sur un [[Pratt & Whitney Canada PT6|PT6T]] installé sur un [[Bell 412]]. L'air entre en haut à droite, et le flux suit la pente incurvée vers l'entrée du moteur (également recouverte d'une grille). Les débris potentiellement aspirés ont trop d'inertie pour pouvoir effectuer un virage aussi serré et heurteront l'écran en haut à gauche, avant d'être expulsés par dessus bord.]]
[[Fichier:Screech Owl named Fod found on USS Harry S. Truman (CVN 75).jpg|vignette|upright=1.25|En, [[2008]], cette mignonne petite chouette avait élu domicile dans le logement de [[Train d'atterrissage|train]] principal gauche d'un [[McDonnell Douglas F/A-18 Hornet|F/A-18 ''Hornet'']], sur un [[porte-avions]] américain. Découverte lors d'une inspection pré-vol et ensuite nommée « FOD », elle est aussi potentiellement considérée comme un « débris » par la réglementation.]]

== Équivalent en anglais ==
Le terme anglais pour ce type d'éléments est « '''''Foreign Object Debris''''' », souvent désigné par l'acronyme '''FOD''', mais ce terme désignait initialement l'ensemble des dommages causés par ces débris. Il était donc souvent lié au terme « '''''Foreign Object Damage''''' », qui était plus général<ref name="NAFPI website" >{{lien web |langue=en |url=https://web.archive.org/web/20150310223315/http://www.nafpi.com/ |titre=Official Homepage of the NAFPI - National Aearospace FOD Prevention |consulté le=9 mars 2017}}</ref>{{,}}<ref group="Note" >D'après le ''National Aerospace Standard 412'', suivi par la ''National Association of FOD Prevention, Inc.''</ref>.

Le terme « ''damage'' » (dommages) était prévalent dans le domaine militaire, mais a depuis été remplacé par une définition de FOD signifiant « ''Foreign Object Debris'' ». Ce changement fut rendu « officiel » par les dernières circulaires de l'[[Federal Aviation Administration|administration fédérale américaine]] (FAA), désignées « FAA A/C 150/5220-24 ''Airport Foreign Object Debris (FOD) Detection Equipment'' » (2009) et « FAA A/C 150/5210-24 ''Airport Foreign Object Debris (FOD) Management'' ». [[Eurocontrol]], l'[[Conférence européenne de l'aviation civile|ECAC]], et l'[[Organisation de l'aviation civile internationale|OACI]] se sont toutes ralliées derrière cette définition. Lors de sa présentation au congrès du ''National Association of FOD Prevention, Inc.'' (NAFPI), en {{date||août|2010|en aéronautique}}, Iain McCreary, d'''Insight SRI'', déclarait à ce sujet : « ''Vous pouvez avoir une présence de débris sans présence de dommages, mais jamais de dommages sans débris'' ». Suivant ce principe, les systèmes de prévention FOD travaillent en détectant et analysant les débris, plutôt que les dommages. FOD se rapporte donc désormais aux débris, alors que les dommages seront désignés « ''FOD damage'' ».



==Examples==
Internal FOD is damage or hazards caused by foreign objects inside the aircraft. For example, cockpit FOD is a situation where an item gets loose in the cockpit and jams or restricts the operation of the controls. Tool FOD is a serious hazard caused by tools left inside the aircraft after manufacturing or servicing. Tools or other items can get tangled in control cables, jam [[moving parts]], short out electrical connections, or otherwise interfere with safe flight. Aircraft maintenance teams usually have strict tool control procedures including toolbox inventories to make sure all tools have been removed from an aircraft before it is released for flight. Tools used during manufacturing are tagged with a serial number so if they are found they can be traced.

Examples of FOD include:<ref>[http://www.xsightsys.com/index.aspx?id=3297 Technology articles about FOD]</ref>
*Aircraft parts, rocks, broken pavement, ramp equipment.
*Parts from ground vehicles
*Garbage, maintenance tools, etc. mistakenly or purposely deposited on tarmac and/or runway surfaces.
*[[Hail]]: can break windshields and damage or stop engines.
*Ice on the wings, propellers, or engine intakes
*[[Bird strike|Bird]] collisions with engines or other sensitive parts of the aircraft.
*Dust or ash clogging the air intakes (as in [[dust storm|sandstorms]] in desert operating conditions or ash clouds in [[volcanic eruptions]]). For helicopters, this is also a major problem during a [[brownout (aviation)|brownout]].
*Tools, bolts, metal shavings, [[Safety wire|lockwire]], etc. mistakenly left behind inside aircraft during the manufacturing process or maintenance.

All aircraft may occasionally lose small parts during takeoff and landing. These parts remain on the runway and can cause damage to tires of other aircraft, hit the fuselage or windshield/canopy, or get sucked up into an engine. Although airport [[ground crew]]s regularly clean up runways, the crash of [[Air France Flight 4590]] demonstrated that accidents can still occur: in that case, the crash was said to have been caused by debris left by a flight that had departed only four minutes earlier.

[[File:US Navy 040921-N-8704K-001 All hands participate in a Foreign Object Damage (FOD) walk down on the flight deck aboard the conventionally powered aircraft carrier US John F. Kennedy (CV 67).jpg|thumb|A Foreign Object Damage walk down aboard the aircraft carrier [[USS John F. Kennedy (CV 67)|USS ''John F. Kennedy'' (CV 67)]].]]

On aircraft carriers, as well as military and some civilian airfields, sweeps are conducted before flight operations begin. A line of crewmen walk shoulder to shoulder along the flight operations surfaces, searching for and removing any foreign objects.

==Jet engine design and FOD==
Modern jet engines can suffer major damage from even small objects being sucked into the engine. The FAA ([[Federal Aviation Administration]]) requires that all engine types pass a test which includes firing a fresh chicken (dead, but not frozen) into a running jet engine from a small cannon. The engine does not have to remain functional after the test, but it must not cause significant damage to the rest of the aircraft. Thus, if the [[bird strike]] causes it to "throw a blade" (break apart in a way where parts fly off at high speed), doing so must not cause loss of the aircraft.<ref>[http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/1ab39b4ed563b08985256a35006d56af/342f360c7f8e146a86256a84005b1f57/$FILE/ac33.76-1.pdf FAA Advisory Circular]</ref>

==Engine and airframe designs which avoid FOD==
Some military aircraft{{Citation needed|date=February 2012}} {{Which?|date=May 2016}}had a unique design to prevent FOD from damaging the engine. The design included an S-shaped bend in the airflow, so that air entered the inlet, was bent back towards the front of the plane, and bent back again towards the back before entering the engine. At the back of the first bend a strong spring held a door shut. Any foreign object flying in the intake flew in, hit the door, opened it, flew through, and then exited the aircraft. Thus, only small objects swept up by the air could enter the engine. This design did indeed prevent FOD problems, but the constriction and drag induced by the bending of the airflow reduced the engine's effective power, and thus the design was not repeated.

A similar approach is used on many [[turboshaft]]-powered [[helicopter]]s, such as the [[Mil Mi-24|Mi-24]], which use a "vortex-type" or "centrifugal" intake, in which the air is forced to flow through a spiral path before entering the engine; the heavier dust and other debris are forced outwards, where it is separated from the airflow before it enters the engine inlet.

The [[Russia]]n [[Mikoyan MiG-29]] fighter has a special intake design to prevent ingestion of FOD during take-off from rough airfields. The main air intakes could be closed with mesh doors and special inlets on the top of the intakes temporarily opened. This would allow enough airflow to the engine for take-off but reduced the chances of the engine sucking up objects from the ground.

Another interesting design to minimize the risk of FOD is the [[Antonov An-74]] which has a very high placement of the engines.

[[Boeing]] offered a gravel runway kit for early [[Boeing 737|737]]s that allows the plane to be used from unimproved and gravel runways, in spite of having very low-slung engines. This kit included gravel deflectors on the landing gear; foldaway lights on the bottom of the plane; and screens that prevented gravel, entering the open wheelwells when the gear was extended, from hitting critical components. It also included vortex dissipators, devices that would reduce the airflow into the engine from the bottom so as to reduce the likelihood of ingesting gravel.<ref>{{cite web |title=Unpaved Strip Kit |url=http://www.b737.org.uk/unpavedstripkit.htm |work=The (unofficial) 737 Technical Site |accessdate=2008-08-09}}</ref><ref>{{cite web |title=A Brief Description of the 737 Family of Airplanes |url=http://www.boeing.com/commercial/airports/acaps/737sec1.pdf
|accessdate=2008-08-09 |date=October 2005}}</ref>

Airbus are investigating a novel approach to reducing FOD. By developing, in conjunction with [[Israel Aerospace Industries]], the [[Taxibot]], a tractor controlled by the pilot, aircraft will not need to use jet engines while taxiing, so will not be vulnerable to FOD on aprons or taxiways.<ref>{{cite web |title=Airbus MoU with IAI to explore eco-efficient ‘engines-off’ taxiing |url=http://www.aviationnews.eu/2009/06/17/airbus-mou-with-iai-to-explore-eco-efficient-engines-off-taxiing/ |accessdate=2009-07-30}}</ref>

==FOD damage examples==

===Runway debris===
The crash of a [[Concorde]], [[Air France Flight 4590]], at [[Charles de Gaulle Airport]] near [[Paris]] on 25 July 2000 was caused by FOD; in this case a piece of [[titanium]] debris on the runway which had been part of a [[thrust reverser]] which fell off from a [[Continental Airlines]] [[McDonnell Douglas DC-10]] that had taken off about four minutes earlier. All 100 passengers and nine crew on board the flight, as well as four people on the ground, were killed.

A [[Bombardier Aerospace|Bombardier]] [[Learjet 36A]] was taking off from Newport News/Williamsburg International Airport in Virginia on March 26, 2007, when the crew heard a loud “pop”. Aborting the takeoff, the crew tried to control the “fishtailing” and activate the drag chute. The chute did not work and the Learjet ran off the runway, its tires blown. Airport personnel reported seeing rocks and pieces of metal on the [[runway]] after the accident. The [[NTSB]] said that the accident was caused by Foreign Object Debris (FOD) on the runway. Failure of the drag chute contributed to the accident.{{Citation needed|date=October 2011}}

===Volcanic ash===
On 24 June 1982, [[British Airways Flight 9]] en route to [[Perth, Western Australia|Perth]], [[Australia]], flew into a volcanic ash cloud over the Indian Ocean. The [[Boeing 747|Boeing 747-200B]] suffered engine surges in all four engines until they all [[flameout|failed]]. The passengers and crew could see a phenomenon known as [[St. Elmo's fire]] around the plane. Flight 9 dived down until it exited the cloud allowing the airborne ash to clear the engines, which were then restarted. The cockpit windshield was badly pitted by the ash particles but the aircraft landed safely.

On 15 December 1989, [[KLM Flight 867]], en route to [[Narita International Airport]], [[Tokyo]] flew through a thick cloud of volcanic ash from Mount Redoubt, which had erupted the day before. The [[Boeing 747-400]]'s four engines flamed out. After descending more than 14,000 feet, the crew restarted the engines and landed safely at [[Anchorage International Airport]].

===Item jettisoned from aircraft===
An unusual case of FOD occurred on 28 September 1981 over [[Chesapeake Bay]]. During flight testing of an [[F/A-18 Hornet]], the [[Naval Air Test Center]] of the [[United States Navy]] was using a [[A-4 Skyhawk|Douglas TA-4J Skyhawk]] as a [[chase plane]] to film a jettison test of a bomb rack from the Hornet. The bomb rack struck the right wing of the Skyhawk, shearing off almost half the wing. The Skyhawk caught fire within seconds of being struck; the two persons on board [[ejection seat|ejected]].<ref>[http://www.ejection-history.org.uk/project/YEAR_Pages/1981.htm List of ejections from aircraft in 1981.] Retrieved: 30 August 2008.</ref><ref>[http://www.aviationbanter.com/showthread.php?t=19110 Page with link to WMV clip of destruction of TA-4J BuNo. 156896.] Retrieved 30 August 2008.</ref>

===Bird strikes===
On 20 November 1975 a [[British Aerospace BAe 125|Hawker Siddeley HS.125]] taking off at [[Dunsfold Aerodrome]] flew through a flock of [[northern lapwing]]s immediately after lifting off the runway and lost power in both engines. The crew landed the aircraft back on the runway but it overran the end and crossed a road. The aircraft struck a car on the road, killing its six occupants. Although the aircraft was destroyed in the ensuing fire, the nine occupants of the aircraft survived the crash.<ref>[http://www.aaib.gov.uk/cms_resources.cfm?file=/1-1977%20G-BCUX.pdf AAIB Official Report of the investigation into the crash of HS.125-600B registration G-BCUX] retrieved 2010-05-19.</ref>

On 17 November 1980 a [[Hawker Siddeley Nimrod]] of the [[Royal Air Force]] crashed shortly after taking off from [[RAF Kinloss]]. It flew through a flock of [[Canada goose|Canada geese]], causing three of its four engines to fail. The pilot and copilot were killed; the pilot was subsequently [[Posthumous recognition|posthumously]] awarded an [[Air Force Cross (United Kingdom)|Air Force Cross]] for his actions in maintaining control of the aircraft and saving the lives of the 18 crew. The remains of 77 birds were found on or near the runway.<ref>[http://aviation-safety.net/database/record.php?id=19801117-1 Aviation Safety Network XV256 accident page] retrieved 2008-01-23.</ref><ref>"RAAF Exchange Pilot Valour Cited in RAF Accident Report", "Newsdesk - Military", ''Australian Aviation'' magazine No. 16, September 1982, p45. Aerospace Publications Pty. Ltd., Manly NSW</ref>

On January 15, 2009, [[US Airways Flight 1549]] flew into a flock of Canada geese and suffered a double engine failure. The pilot [[water landing|ditch]]ed the aircraft in the Hudson River, saving the lives of all on board.

===Persons===
People working near aircraft have been sucked into jet engines. Some have died from their injuries.<ref>{{cite web|url=http://www.sickchirpse.com/man-sucked-into-jet-plane-engine/ |title=Aftermath Of Man Being Sucked Into Jet Plane Engine |website=Sickchirpse |date=9 October 2013 |access-date=23 January 2017}}</ref>

==Wildlife and wetlands near airports==
Significant problems occur with airports where the grounds were or have become nesting areas for birds. While fences can prevent a [[moose]] or [[deer]] from wandering onto a runway, birds are more difficult to control. Often airports employ a type of [[bird scarer]] that operates on propane to cause a noise loud enough to scare away any birds that might be in the vicinity. Airport managers use any means available (including [[falconry|trained falcons]]) to reduce bird populations. Another solution under investigation is the use of [[artificial turf]] near runways, since it does not offer food, shelter, or water to wildlife.<ref>{{cite web |url=http://www.tc.faa.gov/its/worldpac/techrpt/ar06-23.pdf |title=Airside Applications for Artificial Turf |year=2006 |publisher=Federal Aviation Administration}}</ref>

===Conferences===
In the United States, the most prominent gathering of FOD experts has been the annual National Aerospace FOD Prevention Conference. It is hosted in a different city each year by National Aerospace FOD Prevention, Inc. (NAFPI), a nonprofit association that focuses on FOD education, awareness and prevention. Conference information, including presentations from past conferences, is available at the NAFPI Web site.<ref name="NAFPI website"/> However, NAFPI has come under some critique as being focused on tool control and manufacturing processes, and other members of the industry have stepped forward to fill the gaps. BAA hosted the world's first airport-led conference on the subject in November 2010.<ref>{{cite web |title=BAA Global FOD Conference |url=http://www.heathrow.com/fod |work=BAA London Heathrow Airport |accessdate=2010-12-02}}</ref>

==Detection technologies==
There is some debate regarding FOD detection systems as the costs can be high and the domain of responsibility is not clear. However, one airport claims that their FOD detection system may have paid for itself in a single incident where personnel were alerted to a steel cable on the runway, before a single aircraft was put at risk.<ref>{{cite web |title=YVR Airport |url=http://yvrconnections.com/category/news-events/ |work=TV Interview |accessdate=2009-07-30}}</ref> The FAA has investigated FOD detection technologies, and has set standards for the following categories:<ref>{{cite web |title=FAA Advisory Circular |url=http://www.faa.gov/documentLibrary/media/Advisory_Circular/draft_150_5220_xx.pdf |accessdate=2009-09-21}}</ref>
*Radar
*Electro-Optical [visible band imagery (standard CCTV) and low light cameras]
*Hybrid:
*[[RFID on metal]]

==Damage tolerance improvements==
The negative effects from FOD can be reduced or entirely eliminated by introducing compressive residual stresses in critical fatigue areas into the part during the manufacturing process. These beneficial stresses are induced into the part through cold working the part with peening processes: shot peening, or [[laser peening]]. The deeper the compressive residual stress the more significant the fatigue life and damage tolerance improvement. Shot peening typically induces compressive stresses a few thousandths of an inch deep, laser peening typically imparts compressive residual stresses 0.040 to 0.100 inches deep. Laser peen induced compressive stresses are also more resistant to heat exposure.

==Technologies, information and training materials helpful in preventing FOD==
*Aerospace Tool Control Systems
*FOD Prevention Program Manuals
*Magnetic Bars
*Promotional and Awareness Materials
*Tool and Parts Control/Retrieval
*Tow-behind friction sweeper
*Tow-behind Sweepers
*Training Materials
*Vacuum Truck Sweepers
*Walk-behind Sweepers

==Economic impact==
Internationally, FOD costs the aviation industry [[United States dollar|US$]]13 billion per year in direct plus indirect costs. The indirect costs are as much as ten times the direct cost value, representing delays, aircraft changes, incurred fuel costs, unscheduled maintenance, and the like.<ref>{{cite web |title=Runway Safety - FOD, Birds, and the Case for Automated Scanning |url=http://www.runway-safety.com |work= Insight SRI Ltd |accessdate=2010-12-02}}</ref> and causes expensive, significant damage to aircraft and parts and death and injury to workers, pilots and passengers.

It is estimated that FOD costs major airlines in the United States $26 per flight in aircraft repairs, plus $312 in such additional indirect costs as flight delays, plane changes and fuel inefficiencies.<ref>{{cite web |title=The Economic Cost of FOD to Airlines |url=http://insightsri.com/system/files/The+Ecomonic+Cost+of+FOD+-+Jul08.pdf |work=Insight SRI Ltd |accessdate=2008-10-29}}</ref>

"There are other costs that are not as easy to calculate but are equally disturbing," according to UK Royal Air Force Wing Commander and FOD researcher Richard Friend.<ref name="Make It FOD Free">[http://www.makeitfodfree.com Make It FOD Free] website</ref> "From accidents such as the Air France Concorde, [[Air France Flight 4590|Flight AF 4590]], there is the loss of life, suffering and effect on the families of those who died, the suspicion of malpractice, guilt, and blame that could last for lifetimes. This harrowing torment is incalculable but should not be forgotten, ''ever''. If everyone kept this in mind, we would remain vigilant and forever prevent foreign object debris from causing a problem. In fact, many factors combine to cause a chain of events that can lead to a failure."

==Studies==
There have only been two detailed studies of the economic cost of FOD for civil airline operations. The first was by Brad Bachtel of [[Boeing]], who published a value of $4 billion [[United States dollar|USD]] per year.<ref>{{cite web |title=Foreign Object Debris and Damage Prevention |url=http://www.boeing.com/commercial/aeromagazine/aero_01/textonly/s01txt.html |work= Boeing Aero Magazine |accessdate=2008-10-28}}</ref> This top-down value was for several years the standard industry figure for the cost of FOD. The second work (2007) was by Iain McCreary from the consultancy Insight SRI Ltd. This more detailed report offered a first-cut of the cost of FOD, based on a bottom-up analysis of airline maintenance log records. Here, data was broken into '''Per Flight Direct Costs''' and '''Per Flight Indirect Costs''' for the top 300 global airports, with detailed footnotes on the supporting data.<ref name="insightsri.com">{{cite web |title=The Economic Cost of FOD to Airlines |url=http://insightsri.com/publications |work= Insight SRI Ltd |accessdate=2008-10-28}}</ref> The Insight SRI research was a standard reference for 2007-2009 as it was the only source presenting costs and thus was quoted by regulators, airports, and technology providers alike.<ref>[http://www.eurocontrol.int/corporate/public/standard_page/biz_safety.html]</ref>

However, while that 2007 Insight SRI paper remains the best free public source of data, the new analysis (2010) from Insight SRI offers new numbers. The author of the new report (not free) says "Readers are cautioned not to rely on or in the future refer to numbers from the 2007-08 Insight SRI paper‘The Economic Cost of FOD to Airlines’. This earlier effort was ‘The’ first document detailing the direct and indirect cost of FOD that was based on airline maintenance data (the entire document was a single page of
data, followed by 8 pages of footnotes)."

'''Per Flight Direct Costs''' of $26<ref name="insightsri.com"/> are calculated by considering engine maintenance spending, tire replacements, and aircraft body damage.

'''Per Flight Indirect Costs''' include a total of 31 individual categories:
#Airport efficiency losses
#Carbon / Environmental issues
#Change of aircraft
#Close airport
#Close runway
#Corporate manslaughter/criminal liability
#Cost of corrective action
#Cost of hiring and training replacement
#Cost of rental or lease of replacement equipment
#Cost of restoration of order
#Cost of the investigation
#Delay for planes in air
#Delays at gate
#Fines and citations
#Fuel efficiency losses
#Hotels
#In-air go-around
#Increased insurance premiums
#Increased operating costs on remaining equipment
#Insurance deductibles
#Legal fees resulting
#Liability claims in excess of insurance
#Loss of aircraft
#Loss of business and damage to reputation
#Loss of productivity of injured personnel
#Loss of spares or specialized equipment
#Lost time and overtime
#Missed connections
#Morale
#Reaction by crews leading to disruption of schedule
#Replacement flights on other carriers
#Scheduled maintenance
#Unscheduled maintenance
The study concludes that when these indirect costs are added, then the cost of FOD increases by a multiple of up to 10x.<ref>{{cite web |url=http://www.insightsri.com/system/files/The+Ecomonic+Cost+of+FOD+-+Jul08.pdf |title=The economic cost of FOD to airlines |author= |date=March 2008|work=Insight SRI Ltd. |publisher= |accessdate=}}</ref>

[[Eurocontrol]] and the [[FAA]] are both studying FOD. Eurocontrol released a preliminary assessment of FOD Detection technologies in 2006, while the FAA is conducting trials of the four leading systems from [[Qinetiq]] (PVD, Providence [[T. F. Green Airport]]), Stratech (ORD, Chicago [[O'Hare International Airport]]), [[Xsight Systems]] (BOS, Boston [[Logan International Airport]]), and [[Trex Aviation Systems]] (ORD, Chicago O'Hare Airport) during 2007 and 2008. Results of this study should be published in 2009.{{update after|2009|12|31}}

==References==
;Notes
{{Reflist}}
{{Commons category|Foreign object damage}}

{{DEFAULTSORT:Foreign Object Damage}}
[[Category:Aviation risks]]

Version du 7 mars 2017 à 18:00

Lycoming LTS101
(caract. LTS101-650C-3/3A)
Vue du moteur
Un Honeywell LTS101-750 installé dans un Bell 222U.

Constructeur Drapeau des États-Unis Lycoming Engines
Drapeau des États-Unis Honeywell Aerospace
Premier vol
Utilisation Bell 222
Air Tractor AT-302
Aérospatiale HH-65 Dolphin
MBB-Kawasaki BK 117
Caractéristiques
Type Turbomoteur (LTS101)[1],[2]
Turbopropulseur (LTP101)
Longueur 780 mm
Diamètre 580 mm
Masse 109 kg
Composants
Compresseur • 1 étage BP axial + 1 étage HP centrifuge
Chambre de combustion Annulaire, à flux inversé (« reverse flow »)
Turbine • Générateur de gaz : axiale à 1 étage
Prise de puissance : axiale libre à 1 étage
Performances
Puissance maximale 675 shp, soit 496,39 kW
Taux de compression 8,4 : 1
Les pales du premier étage de compresseur d'un LTS101, installé sur un Bell 222, après avoir été victimes de l'ingestion d'un boulon qui n'avait pas été arrêté par la grille de protection d'entrée d'air. Les dégâts sont bien visibles et surtout importants.

« LTS101 » est le nom d'une famille de turbomoteurs américains dont la plage de puissance s'étale de 650 à 850 ch. Conçu initialement par le département Turbine Engine Division du constructeur Lycoming Engines dans l'usine Avco de Stratford, il est désormais produit par Honeywell Aerospace. Sous sa désignation principale LTS101, il équipe de nombreux hélicoptères légers, mais il existe également en version turbopropulseur, désigné LTP101, et équipe sous cette forme de nombreux avions légers[3].

Sous ses deux formes, il porte la désignation militaire de T702. Certifié en 1975, il a été produit à plus de 2 100 exemplaires et a enregistré plus de 11 millions d'heures de fonctionnement[4]. Si les premières versions produisaient une puissance de 650 ch, les dernières atteignent les 750 ch, voire 780 ch sur les dernières versions couplées (applications bimoteurs)[4].

Versions

Turbopropulseurs

Turbomoteurs

  • LTS101-600A-2 : Eurocopter AS350 AStar ;
  • LTS101-600A-3
  • LTS101-600A-3A
  • LTS101-650B-1 : BK 117 A-1
  • LTS101-650B-1A
  • LTS101-650C-2
  • LTS101-650C-3 : Bell 222A. Puissance de 675 shp, soit 496,39 kW ;
  • LTS101-650C-3A
  • LTS101-700D-2 : Puissance de 732 shp, soit 538,31 kW ;
  • LTS101-750B-1 : BK 117 B-1 et B-2 ; Puissance de 593 shp, soit 436,09 kW ;
  • LTS101-750B-2 : Aérospatiale HH-65A/B Dolphin. Puissance de 734 shp, soit 539,78 kW ;
  • LTS101-750C-1 : Bell 222B et 222U. Puissance de 680 shp, soit 500,07 kW ;
  • LTS101-850B-2 : Version « twin-engine », destinée à équiper des hélicoptères bimoteurs, proposée pour une évolution du HH-65 Dolphin, mais refusée. Elle équipe par contre le BK117-850D2[5]. Puissance de 780 shp, soit 573,61 kW.
  • T702 : Désignation militaire.

Applications

Notes et références

  1. (en) Gunston 1989, p. 96
  2. (en) Aviation Week & Space Technology Source Book 2009 : Gas Turbine Engines, , p. 119
  3. (en) « Turboshaft Engines: LTS101 », Honeywell Aerospace, (consulté le )
  4. a et b (en) « LTS101 Turboshaft Engine » (consulté le )
  5. a et b (en) « Honeywell Announces LTS101-850B-2 Engine Upgrade for Eurocopter BK117 », Honeywell Aerospace, (consulté le )

Voir aussi

Modèle:Au tres projets

Articles connexes

Bibliographie


Modèle:Por tail

Cat égorie:Turbomoteur Cat égorie:Turbopropulseur AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Honeywell HTS900
(caract. HTS900-2-1D)
Constructeur Honeywell Aerospace
Utilisation Bell ARH-70 Arapaho
SKYe SH09
Caractéristiques
Type Turbomoteur
Longueur 922 mm
Diamètre 647 mm
Composants
Compresseur 2 étages centrifuges
Chambre de combustion Annulaire, à flux inversé (« reverse flow »)
Turbine • Générateur de gaz : axiale à 1 étage
Prise de puissance : axiale libre à 1 étage
Puissance maximale 820 shp, soit 603,03 kW

Le Honeywell HTS900 est un turbomoteur produit par le constructeur américain Honeywell Aerospace. Propulsant des hélicoptères, il produit des puissances dans la gamme des 1 000 ch.

Généralités

Le HTS900 a été conçu comme une évolution du moteur à succès Lycoming LTS101, qu'il est d'ailleurs amené à remplacer[1].

Lors de la Heli Expo de 2005, à Anaheim, le directeur général de Bell Helicopter Mike Redenbaugh a annoncé que le HTS900 serait installé dans le Bell 407, créant ainsi le 407X[1]. L'installation de ce moteur dans cet hélicoptère devait lui donner une amélioration de son rapport poids/puissance de 26 %, et une augmentation de puissance en environnements chauds de plus de 40 % (35 % en conditions normales)[1]. En raison d'une puissance supérieure, le coût d'entretien direct par cheval-vapeur de puissance est diminué d'environ 50 % par rapport au LTS101[1].

Le HTS900 comporte de nombreuses améliorations par rapport à son prédécesseur, parmi lesquelles un compresseur centrifuge à deux étages, un refroidissement poussé des éléments du générateur de gaz, ainsi qu'un double système de gestion FADEC[1],[2]. Le temps de service entre deux révisions majeures était initialement de 3 000 heures, mais il devrait passer à 500 heures dans un futur proche[1].

Sur le 407X, la puissance maximale au décollage sera de 925 ch, alors que la puissance en régime de croisière sera de 837 ch. Ces puissances sont obtenues à un régime de 6 317 tr/min[2].

Bien que le LTS101 ait équipé le HH-65 Dolphin, version « américanisée » du Dauphin de Sud-Aviation, il semblerait que des problèmes de fiabilité sur ce moteur aient poussé les Américains à choisir l'Arriel plutôt que le HTS900 pour remotoriser leurs appareils[3].

Applications

Notes et références

  1. a b c d e et f (en) « HELI-EXPO 2005 - Bell 407 Upgraded With New HTS900 », Aviation Today, (consulté le )
  2. a et b (en) « HTS900 Turboshaft Engine », Honeywell Aerospace (consulté le )
  3. (en) James T. McKenna, « Here to Stay », Rotor & Wing Magazine, (consulté le )

Voir aussi

Modèle:Au tres projets

Articles connexes

Bibliographie


Modèle:Por tail

Cat égorie:Turbomoteur AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Cas typique d'ingestion de débris par un turbomoteur : Les pales du premier étage de compresseur d'un LTS101, installé sur un Bell 222, après avoir été victimes de l'ingestion d'un boulon qui n'avait pas été arrêté par la grille de protection d'entrée d'air. Les dégâts sont bien visibles et surtout importants.

En aéronautique, un corps étranger désigne tout type de substance, de débris ou d'élément, mécanique ou non, étant totalement étranger à un aéronef ou un système mais pouvant lui causer des dommages.

Système de déflexion des débris sur un PT6T installé sur un Bell 412. L'air entre en haut à droite, et le flux suit la pente incurvée vers l'entrée du moteur (également recouverte d'une grille). Les débris potentiellement aspirés ont trop d'inertie pour pouvoir effectuer un virage aussi serré et heurteront l'écran en haut à gauche, avant d'être expulsés par dessus bord.
En, 2008, cette mignonne petite chouette avait élu domicile dans le logement de train principal gauche d'un F/A-18 Hornet, sur un porte-avions américain. Découverte lors d'une inspection pré-vol et ensuite nommée « FOD », elle est aussi potentiellement considérée comme un « débris » par la réglementation.

Équivalent en anglais

Le terme anglais pour ce type d'éléments est « Foreign Object Debris », souvent désigné par l'acronyme FOD, mais ce terme désignait initialement l'ensemble des dommages causés par ces débris. Il était donc souvent lié au terme « Foreign Object Damage », qui était plus général[1],[Note 1].

Le terme « damage » (dommages) était prévalent dans le domaine militaire, mais a depuis été remplacé par une définition de FOD signifiant « Foreign Object Debris ». Ce changement fut rendu « officiel » par les dernières circulaires de l'administration fédérale américaine (FAA), désignées « FAA A/C 150/5220-24 Airport Foreign Object Debris (FOD) Detection Equipment » (2009) et « FAA A/C 150/5210-24 Airport Foreign Object Debris (FOD) Management ». Eurocontrol, l'ECAC, et l'OACI se sont toutes ralliées derrière cette définition. Lors de sa présentation au congrès du National Association of FOD Prevention, Inc. (NAFPI), en , Iain McCreary, d'Insight SRI, déclarait à ce sujet : « Vous pouvez avoir une présence de débris sans présence de dommages, mais jamais de dommages sans débris ». Suivant ce principe, les systèmes de prévention FOD travaillent en détectant et analysant les débris, plutôt que les dommages. FOD se rapporte donc désormais aux débris, alors que les dommages seront désignés « FOD damage ».


Examples

Internal FOD is damage or hazards caused by foreign objects inside the aircraft. For example, cockpit FOD is a situation where an item gets loose in the cockpit and jams or restricts the operation of the controls. Tool FOD is a serious hazard caused by tools left inside the aircraft after manufacturing or servicing. Tools or other items can get tangled in control cables, jam moving parts, short out electrical connections, or otherwise interfere with safe flight. Aircraft maintenance teams usually have strict tool control procedures including toolbox inventories to make sure all tools have been removed from an aircraft before it is released for flight. Tools used during manufacturing are tagged with a serial number so if they are found they can be traced.

Examples of FOD include:[2]

  • Aircraft parts, rocks, broken pavement, ramp equipment.
  • Parts from ground vehicles
  • Garbage, maintenance tools, etc. mistakenly or purposely deposited on tarmac and/or runway surfaces.
  • Hail: can break windshields and damage or stop engines.
  • Ice on the wings, propellers, or engine intakes
  • Bird collisions with engines or other sensitive parts of the aircraft.
  • Dust or ash clogging the air intakes (as in sandstorms in desert operating conditions or ash clouds in volcanic eruptions). For helicopters, this is also a major problem during a brownout.
  • Tools, bolts, metal shavings, lockwire, etc. mistakenly left behind inside aircraft during the manufacturing process or maintenance.

All aircraft may occasionally lose small parts during takeoff and landing. These parts remain on the runway and can cause damage to tires of other aircraft, hit the fuselage or windshield/canopy, or get sucked up into an engine. Although airport ground crews regularly clean up runways, the crash of Air France Flight 4590 demonstrated that accidents can still occur: in that case, the crash was said to have been caused by debris left by a flight that had departed only four minutes earlier.

A Foreign Object Damage walk down aboard the aircraft carrier USS John F. Kennedy (CV 67).

On aircraft carriers, as well as military and some civilian airfields, sweeps are conducted before flight operations begin. A line of crewmen walk shoulder to shoulder along the flight operations surfaces, searching for and removing any foreign objects.

Jet engine design and FOD

Modern jet engines can suffer major damage from even small objects being sucked into the engine. The FAA (Federal Aviation Administration) requires that all engine types pass a test which includes firing a fresh chicken (dead, but not frozen) into a running jet engine from a small cannon. The engine does not have to remain functional after the test, but it must not cause significant damage to the rest of the aircraft. Thus, if the bird strike causes it to "throw a blade" (break apart in a way where parts fly off at high speed), doing so must not cause loss of the aircraft.[3]

Engine and airframe designs which avoid FOD

Some military aircraft[réf. nécessaire] Modèle:Which?had a unique design to prevent FOD from damaging the engine. The design included an S-shaped bend in the airflow, so that air entered the inlet, was bent back towards the front of the plane, and bent back again towards the back before entering the engine. At the back of the first bend a strong spring held a door shut. Any foreign object flying in the intake flew in, hit the door, opened it, flew through, and then exited the aircraft. Thus, only small objects swept up by the air could enter the engine. This design did indeed prevent FOD problems, but the constriction and drag induced by the bending of the airflow reduced the engine's effective power, and thus the design was not repeated.

A similar approach is used on many turboshaft-powered helicopters, such as the Mi-24, which use a "vortex-type" or "centrifugal" intake, in which the air is forced to flow through a spiral path before entering the engine; the heavier dust and other debris are forced outwards, where it is separated from the airflow before it enters the engine inlet.

The Russian Mikoyan MiG-29 fighter has a special intake design to prevent ingestion of FOD during take-off from rough airfields. The main air intakes could be closed with mesh doors and special inlets on the top of the intakes temporarily opened. This would allow enough airflow to the engine for take-off but reduced the chances of the engine sucking up objects from the ground.

Another interesting design to minimize the risk of FOD is the Antonov An-74 which has a very high placement of the engines.

Boeing offered a gravel runway kit for early 737s that allows the plane to be used from unimproved and gravel runways, in spite of having very low-slung engines. This kit included gravel deflectors on the landing gear; foldaway lights on the bottom of the plane; and screens that prevented gravel, entering the open wheelwells when the gear was extended, from hitting critical components. It also included vortex dissipators, devices that would reduce the airflow into the engine from the bottom so as to reduce the likelihood of ingesting gravel.[4][5]

Airbus are investigating a novel approach to reducing FOD. By developing, in conjunction with Israel Aerospace Industries, the Taxibot, a tractor controlled by the pilot, aircraft will not need to use jet engines while taxiing, so will not be vulnerable to FOD on aprons or taxiways.[6]

FOD damage examples

Runway debris

The crash of a Concorde, Air France Flight 4590, at Charles de Gaulle Airport near Paris on 25 July 2000 was caused by FOD; in this case a piece of titanium debris on the runway which had been part of a thrust reverser which fell off from a Continental Airlines McDonnell Douglas DC-10 that had taken off about four minutes earlier. All 100 passengers and nine crew on board the flight, as well as four people on the ground, were killed.

A Bombardier Learjet 36A was taking off from Newport News/Williamsburg International Airport in Virginia on March 26, 2007, when the crew heard a loud “pop”. Aborting the takeoff, the crew tried to control the “fishtailing” and activate the drag chute. The chute did not work and the Learjet ran off the runway, its tires blown. Airport personnel reported seeing rocks and pieces of metal on the runway after the accident. The NTSB said that the accident was caused by Foreign Object Debris (FOD) on the runway. Failure of the drag chute contributed to the accident.[réf. nécessaire]

Volcanic ash

On 24 June 1982, British Airways Flight 9 en route to Perth, Australia, flew into a volcanic ash cloud over the Indian Ocean. The Boeing 747-200B suffered engine surges in all four engines until they all failed. The passengers and crew could see a phenomenon known as St. Elmo's fire around the plane. Flight 9 dived down until it exited the cloud allowing the airborne ash to clear the engines, which were then restarted. The cockpit windshield was badly pitted by the ash particles but the aircraft landed safely.

On 15 December 1989, KLM Flight 867, en route to Narita International Airport, Tokyo flew through a thick cloud of volcanic ash from Mount Redoubt, which had erupted the day before. The Boeing 747-400's four engines flamed out. After descending more than 14,000 feet, the crew restarted the engines and landed safely at Anchorage International Airport.

Item jettisoned from aircraft

An unusual case of FOD occurred on 28 September 1981 over Chesapeake Bay. During flight testing of an F/A-18 Hornet, the Naval Air Test Center of the United States Navy was using a Douglas TA-4J Skyhawk as a chase plane to film a jettison test of a bomb rack from the Hornet. The bomb rack struck the right wing of the Skyhawk, shearing off almost half the wing. The Skyhawk caught fire within seconds of being struck; the two persons on board ejected.[7][8]

Bird strikes

On 20 November 1975 a Hawker Siddeley HS.125 taking off at Dunsfold Aerodrome flew through a flock of northern lapwings immediately after lifting off the runway and lost power in both engines. The crew landed the aircraft back on the runway but it overran the end and crossed a road. The aircraft struck a car on the road, killing its six occupants. Although the aircraft was destroyed in the ensuing fire, the nine occupants of the aircraft survived the crash.[9]

On 17 November 1980 a Hawker Siddeley Nimrod of the Royal Air Force crashed shortly after taking off from RAF Kinloss. It flew through a flock of Canada geese, causing three of its four engines to fail. The pilot and copilot were killed; the pilot was subsequently posthumously awarded an Air Force Cross for his actions in maintaining control of the aircraft and saving the lives of the 18 crew. The remains of 77 birds were found on or near the runway.[10][11]

On January 15, 2009, US Airways Flight 1549 flew into a flock of Canada geese and suffered a double engine failure. The pilot ditched the aircraft in the Hudson River, saving the lives of all on board.

Persons

People working near aircraft have been sucked into jet engines. Some have died from their injuries.[12]

Wildlife and wetlands near airports

Significant problems occur with airports where the grounds were or have become nesting areas for birds. While fences can prevent a moose or deer from wandering onto a runway, birds are more difficult to control. Often airports employ a type of bird scarer that operates on propane to cause a noise loud enough to scare away any birds that might be in the vicinity. Airport managers use any means available (including trained falcons) to reduce bird populations. Another solution under investigation is the use of artificial turf near runways, since it does not offer food, shelter, or water to wildlife.[13]

Conferences

In the United States, the most prominent gathering of FOD experts has been the annual National Aerospace FOD Prevention Conference. It is hosted in a different city each year by National Aerospace FOD Prevention, Inc. (NAFPI), a nonprofit association that focuses on FOD education, awareness and prevention. Conference information, including presentations from past conferences, is available at the NAFPI Web site.[1] However, NAFPI has come under some critique as being focused on tool control and manufacturing processes, and other members of the industry have stepped forward to fill the gaps. BAA hosted the world's first airport-led conference on the subject in November 2010.[14]

Detection technologies

There is some debate regarding FOD detection systems as the costs can be high and the domain of responsibility is not clear. However, one airport claims that their FOD detection system may have paid for itself in a single incident where personnel were alerted to a steel cable on the runway, before a single aircraft was put at risk.[15] The FAA has investigated FOD detection technologies, and has set standards for the following categories:[16]

  • Radar
  • Electro-Optical [visible band imagery (standard CCTV) and low light cameras]
  • Hybrid:
  • RFID on metal

Damage tolerance improvements

The negative effects from FOD can be reduced or entirely eliminated by introducing compressive residual stresses in critical fatigue areas into the part during the manufacturing process. These beneficial stresses are induced into the part through cold working the part with peening processes: shot peening, or laser peening. The deeper the compressive residual stress the more significant the fatigue life and damage tolerance improvement. Shot peening typically induces compressive stresses a few thousandths of an inch deep, laser peening typically imparts compressive residual stresses 0.040 to 0.100 inches deep. Laser peen induced compressive stresses are also more resistant to heat exposure.

Technologies, information and training materials helpful in preventing FOD

  • Aerospace Tool Control Systems
  • FOD Prevention Program Manuals
  • Magnetic Bars
  • Promotional and Awareness Materials
  • Tool and Parts Control/Retrieval
  • Tow-behind friction sweeper
  • Tow-behind Sweepers
  • Training Materials
  • Vacuum Truck Sweepers
  • Walk-behind Sweepers

Economic impact

Internationally, FOD costs the aviation industry US$13 billion per year in direct plus indirect costs. The indirect costs are as much as ten times the direct cost value, representing delays, aircraft changes, incurred fuel costs, unscheduled maintenance, and the like.[17] and causes expensive, significant damage to aircraft and parts and death and injury to workers, pilots and passengers.

It is estimated that FOD costs major airlines in the United States $26 per flight in aircraft repairs, plus $312 in such additional indirect costs as flight delays, plane changes and fuel inefficiencies.[18]

"There are other costs that are not as easy to calculate but are equally disturbing," according to UK Royal Air Force Wing Commander and FOD researcher Richard Friend.[19] "From accidents such as the Air France Concorde, Flight AF 4590, there is the loss of life, suffering and effect on the families of those who died, the suspicion of malpractice, guilt, and blame that could last for lifetimes. This harrowing torment is incalculable but should not be forgotten, ever. If everyone kept this in mind, we would remain vigilant and forever prevent foreign object debris from causing a problem. In fact, many factors combine to cause a chain of events that can lead to a failure."

Studies

There have only been two detailed studies of the economic cost of FOD for civil airline operations. The first was by Brad Bachtel of Boeing, who published a value of $4 billion USD per year.[20] This top-down value was for several years the standard industry figure for the cost of FOD. The second work (2007) was by Iain McCreary from the consultancy Insight SRI Ltd. This more detailed report offered a first-cut of the cost of FOD, based on a bottom-up analysis of airline maintenance log records. Here, data was broken into Per Flight Direct Costs and Per Flight Indirect Costs for the top 300 global airports, with detailed footnotes on the supporting data.[21] The Insight SRI research was a standard reference for 2007-2009 as it was the only source presenting costs and thus was quoted by regulators, airports, and technology providers alike.[22]

However, while that 2007 Insight SRI paper remains the best free public source of data, the new analysis (2010) from Insight SRI offers new numbers. The author of the new report (not free) says "Readers are cautioned not to rely on or in the future refer to numbers from the 2007-08 Insight SRI paper‘The Economic Cost of FOD to Airlines’. This earlier effort was ‘The’ first document detailing the direct and indirect cost of FOD that was based on airline maintenance data (the entire document was a single page of data, followed by 8 pages of footnotes)."

Per Flight Direct Costs of $26[21] are calculated by considering engine maintenance spending, tire replacements, and aircraft body damage.

Per Flight Indirect Costs include a total of 31 individual categories:

  1. Airport efficiency losses
  2. Carbon / Environmental issues
  3. Change of aircraft
  4. Close airport
  5. Close runway
  6. Corporate manslaughter/criminal liability
  7. Cost of corrective action
  8. Cost of hiring and training replacement
  9. Cost of rental or lease of replacement equipment
  10. Cost of restoration of order
  11. Cost of the investigation
  12. Delay for planes in air
  13. Delays at gate
  14. Fines and citations
  15. Fuel efficiency losses
  16. Hotels
  17. In-air go-around
  18. Increased insurance premiums
  19. Increased operating costs on remaining equipment
  20. Insurance deductibles
  21. Legal fees resulting
  22. Liability claims in excess of insurance
  23. Loss of aircraft
  24. Loss of business and damage to reputation
  25. Loss of productivity of injured personnel
  26. Loss of spares or specialized equipment
  27. Lost time and overtime
  28. Missed connections
  29. Morale
  30. Reaction by crews leading to disruption of schedule
  31. Replacement flights on other carriers
  32. Scheduled maintenance
  33. Unscheduled maintenance

The study concludes that when these indirect costs are added, then the cost of FOD increases by a multiple of up to 10x.[23]

Eurocontrol and the FAA are both studying FOD. Eurocontrol released a preliminary assessment of FOD Detection technologies in 2006, while the FAA is conducting trials of the four leading systems from Qinetiq (PVD, Providence T. F. Green Airport), Stratech (ORD, Chicago O'Hare International Airport), Xsight Systems (BOS, Boston Logan International Airport), and Trex Aviation Systems (ORD, Chicago O'Hare Airport) during 2007 and 2008. Results of this study should be published in 2009.Modèle:Update after

References

Notes
  1. a et b (en) « Official Homepage of the NAFPI - National Aearospace FOD Prevention » (consulté le )
  2. Technology articles about FOD
  3. FAA Advisory Circular
  4. « Unpaved Strip Kit », The (unofficial) 737 Technical Site (consulté le )
  5. « A Brief Description of the 737 Family of Airplanes », (consulté le )
  6. « Airbus MoU with IAI to explore eco-efficient ‘engines-off’ taxiing » (consulté le )
  7. List of ejections from aircraft in 1981. Retrieved: 30 August 2008.
  8. Page with link to WMV clip of destruction of TA-4J BuNo. 156896. Retrieved 30 August 2008.
  9. AAIB Official Report of the investigation into the crash of HS.125-600B registration G-BCUX retrieved 2010-05-19.
  10. Aviation Safety Network XV256 accident page retrieved 2008-01-23.
  11. "RAAF Exchange Pilot Valour Cited in RAF Accident Report", "Newsdesk - Military", Australian Aviation magazine No. 16, September 1982, p45. Aerospace Publications Pty. Ltd., Manly NSW
  12. « Aftermath Of Man Being Sucked Into Jet Plane Engine », sur Sickchirpse, (consulté le )
  13. « Airside Applications for Artificial Turf », Federal Aviation Administration,
  14. « BAA Global FOD Conference », BAA London Heathrow Airport (consulté le )
  15. « YVR Airport », TV Interview (consulté le )
  16. « FAA Advisory Circular » (consulté le )
  17. « Runway Safety - FOD, Birds, and the Case for Automated Scanning », Insight SRI Ltd (consulté le )
  18. « The Economic Cost of FOD to Airlines », Insight SRI Ltd (consulté le )
  19. Make It FOD Free website
  20. « Foreign Object Debris and Damage Prevention », Boeing Aero Magazine (consulté le )
  21. a et b « The Economic Cost of FOD to Airlines », Insight SRI Ltd (consulté le )
  22. [1]
  23. « The economic cost of FOD to airlines », Insight SRI Ltd.,

Sur les autres projets Wikimedia :


Erreur de référence : Des balises <ref> existent pour un groupe nommé « Note », mais aucune balise <references group="Note"/> correspondante n’a été trouvée