Noyau (planète)

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir noyau.

Le noyau d'une planète est la partie centrale approximativement sphérique au cœur de sa structure.

Pour la Terre et Vénus, le noyau planétaire est une masse compacte composée essentiellement de fer (80 %) et de nickel. Il est probable que cette masse soit sous forme solide (noyau interne) au cœur d'un ensemble liquide (noyau externe) qui forme une partie importante de la masse de la planète. La graine (noyau interne) serait elle-même subdivisée en une enveloppe externe et une structure interne appelée l'amande.

Article détaillé : Structure interne de la Terre.
Noyaux de la Lune et des quatre planètes telluriques du Système solaire.

Découverte[modifier | modifier le code]

En 1798, Henry Cavendish calcula la densité moyenne de la Terre à 5.48 fois la densité de l'eau (amélioré plus tard à 5.53), ceci mena à l'acceptation par la communauté scientifique que l'intérieur de la Terre est beaucoup plus dense en son centre[1]. Suite à la découverte des météorites métallique, Wiechert postula en 1898 que la Terre avait une composition similaire aux météorites métalliques, mais le fer a migré à l'intérieur de la Terre[2]. La première détection du noyau de la Terre est effectué en 1906 par Richard Dixon Oldham[3]. En 1936, Inge Lehmann montre que le noyau liquide à l'intérieur de la Terre, mis en évidence par Beno Gutenberg en 1912, doit contenir une graine solide pour expliquer l'arrivée de certaines phases sur les sismogrammes[4]. Ses travaux ont permis de déterminer la taille globale du noyau ainsi que les limites entre le noyau liquide externe et le noyau interne solide[5], interface d'ailleurs appelée discontinuité de Lehmann.

Autres planètes[modifier | modifier le code]

Pour les autres planètes, il est difficile d'établir avec certitude les caractéristiques du noyau, en dehors de la Terre et de la Lune, la meilleure approche pour s'en assurer restant la méthode sismique (détectant les déformations d'ondes de choc sismique au passage au travers du noyau). L'étude du champ magnétique peut cependant fournir des indices intéressants. Selon les théories les plus communément admises, le champ magnétique terrestre est dû aux courants électriques qui parcourent le noyau externe (formé de métaux en fusion) circulant autour d'un noyau interne en fer solide, le mouvement de rotation provoquant un effet dynamo.

Cas de Vénus et de Mars[modifier | modifier le code]

Au contraire, à la surface de Mars, on n'observe qu'un champ magnétique fossile. Il semble indiquer que son noyau pourrait être totalement solidifié, mais que cette planète a possédé dans le passé un noyau fluide. L'absence de champ magnétique à la surface de Vénus est plus difficilement explicable. Il est peut-être dû à une vitesse de rotation trop faible ou à un noyau totalement fluide.

On peut noter qu'il y a un autre effet qui limite les mouvements de convection dans les noyaux de ces 2 planètes telluriques (les moins différentes de la Terre), et, pourtant, participe à l'absence de champ magnétique actif : l'absence de tectonique des plaques et de subduction dans le manteau.
En effet, la subduction (sur Terre) refroidit le manteau et participe à sa convection. Le gradient thermique du manteau est ainsi maintenu assez élevé, qui permet le refroidissement du noyau externe entretenant son gradient thermique et la cristallisation du noyau interne donc de sa démixtion chimique. Ces phénomènes entretiennent les mouvements de convection du noyau externe terrestre produisant le champ magnétique.

  • Sur Mars, la croûte externe est sans doute épaisse et sans subduction, « isolant » d'autant mieux le manteau martien, qui aurait donc une température plus élevée (et uniforme) que la taille réduite de la planète pourrait le laisser penser. De plus, la gravité martienne relativement faible, limite d'autant les mouvements de convection. Le noyau martien a dû se refroidir rapidement au début, puis bien plus lentement, limitant les mouvements de convection dans le noyau liquide (résiduel ?).
  • Sur Vénus, qui est a priori comparable à la Terre, les conditions extrêmes de sa surface empêchent la subduction : l'eau interstitielle des roches s'évapore et n'est pas renouvelée (contrairement à la Terre) et le reste continue sans doute à s'échapper. Cette eau a un rôle de lubrifiant dans les mouvements de fluage des roches, et son absence limite grandement la subduction. Son manteau rocheux doit être ainsi plus chaud que celui de la Terre et plus uniforme en température. Ce qui limite (peut-être complètement) le refroidissement du noyau, qui pourrait être encore entièrement liquide.

Notes et références[modifier | modifier le code]

  1. H. Cavendish, « Experiments to determine the density of Earth », Philosophical Transactions of the Royal Society of London, vol. 88,‎ 1798, p. 469–479 (DOI 10.1098/rstl.1798.0022)
  2. (de) E. Wiechert, « Uber die Massenverteilung im Inneren der Erde », Nachr. K. Ges. Wiss. Goettingen, Math-K.L.,‎ 1897, p. 221–243
  3. Richard Dixon Oldham, « The constitution of the interior of the Earth as revealed by Earthquakes », G.T. Geological Society of London, vol. 62,‎ 1906, p. 459–486
  4. Lehmann I. (1936). P'. Publications du Bureau Central Séismologique International, série A, Travaux Scientifiques 14, 87-115.
  5. (en) Transdyne Corporation, « Richard D. Oldham's Discovery of the Earth's Core » [html], sur nuclearplanet.com, Transdyne Corporation,‎ (consulté le 13 mai 2015)

Lien externe[modifier | modifier le code]