Aller au contenu

Nerf d'un recouvrement

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, le nerf d'un recouvrement est un complexe simplicial abstrait associé à un recouvrement ouvert d'un espace topologique. Il peut éventuellement intervenir dans la définition de la cohomologie de Čech d'un faisceau.

Un recouvrement ouvert d'un espace topologique E est un ensemble 𝒰 d'ouverts de E dont la réunion est E. Son nerf[1],[2] est l'ensemble des parties finies non vides J de 𝒰 telles que

Supposons que le recouvrement est localement fini, et que les intersections sont toutes contractiles. Alors la réalisation géométrique de X a le même type d'homotopie que E. Toute variété topologique de dimension finie (supposée séparée) admet un recouvrement ouvert localement fini. Elle a donc le même type d'homotopie qu'un complexe simplicial.

Notes et références

[modifier | modifier le code]
  1. (en) Edwin Spanier, Algebraic Topology, Springer, , 528 p. (ISBN 978-0-387-90646-1), p. 109
  2. Michel Zisman, Topologie algébrique élémentaire, Armand Colin, , p. 225

(en) S. I. Gelfand et Yu. I. Manin, Methods of Homological Algebra, chap. 1

Articles connexes

[modifier | modifier le code]