Théorème de Weierstrass-Casorati

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant les mathématiques
Cet article est une ébauche concernant les mathématiques.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Page d'aide sur l'homonymie Pour les articles homonymes, voir Théorème de Weierstrass.

En mathématiques, et plus particulièrement en analyse complexe, le théorème de Weierstrass-Casorati décrit une propriété topologique des voisinages d'une singularité essentielle d'une fonction holomorphe. Il est nommé ainsi en l'honneur des mathématiciens Karl Weierstrass et Felice Casorati.

Énoncé[modifier | modifier le code]

Théorème de Weierstrass-Casorati — Soit une fonction holomorphe sur un disque épointé (c'est-à-dire privé de son centre) avec une singularité essentielle en (voir plus bas la définition d'une singularité essentielle).

Alors, pour tout inclus dans , l'ensemble est dense dans ℂ.

Ainsi pour tout inclus dans et pour tout appartenant à ℂ, il existe une suite de telle que tend vers .

Remarque : on dit qu'une fonction analytique complexe admet un point singulier essentiel en lorsque le développement en série de Laurent admet une infinité de termes de la forme . Si le développement n'a qu'un nombre fini de termes de cette forme, le point est un pôle de degré égal à la plus grande puissance de (cas le plus fréquent). Il existe un autre type de singularité à ne pas confondre avec la singularité essentielle, le point de branchement: il existe alors dans le développement autour de a soit un terme logarithmique soit des puissances non entières.

Le grand théorème de Picard a complété le théorème de Weierstrass-Casorati en précisant qu'une telle application prend une infinité de fois toutes les valeurs de ℂ sauf peut être une. La démonstration du théorème de Picard est bien plus difficile que celle du théorème de Weierstrass-Casorati.

Exemples[modifier | modifier le code]

Tracé du module de la fonction . La fonction possède une singularité essentielle en . On peut observer que même en étant très près de 0 le module peut prendre toutes les valeurs positives excepté 0
  • La fonction définie sur ℂ* possède une singularité qui n'est pas essentielle en (c'est en fait un pôle d'ordre 1). On peut remarquer que quand et la fonction ne vérifie donc pas le théorème de Weierstrass-Casorati.
  • La fonction définie pour tout par :
    possède une singularité essentielle en .
    En posant on a les courbes de niveaux de vérifient donc des équations du type est une constante, les courbes de niveaux de sont donc des lemniscates de Bernoulli.

Une application[modifier | modifier le code]

L'utilisation du théorème de Weierstrass-Casorati est l'une des méthodes qui permettent de montrer que les seuls automorphismes biholomorphes de ℂ sont des applications du type avec .

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Lien externe[modifier | modifier le code]

[PDF] Analyse Complexe – Séries de Fourier, cours de Ernst Hairer (en) et Gerhard Wanner, de l'université de Genève