Théorèmes de Picard

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour l’article homonyme, voir Théorème du point fixe de Picard

En analyse complexe, les théorèmes de Picard, du mathématicien Émile Picard, sont au nombre de deux :

Le petit théorème de Picard dit qu'une fonction entière non constante prend tout nombre complexe comme valeur, sauf peut-être un.

Le grand théorème de Picard dit qu'une fonction holomorphe ayant une singularité essentielle prend, sur tout voisinage de cette singularité, tout nombre complexe une infinité de fois comme valeur, sauf peut-être un.

Remarques[modifier | modifier le code]

  • Le « sauf peut-être un » dans ces énoncés est nécessaire, comme le montrent les exemples suivants. La fonction entière (l'exponentielle complexe) ne s'annule pas. Elle possède même une singularité essentielle en l'infini (c'est une fonction transcendante). La fonction est un exemple de fonction ne s'annulant pas avec singularité essentielle bornée (au point ).
  • Le cas des fonctions polynomiales est une conséquence directe du théorème de d'Alembert-Gauss.
  • Le petit théorème se déduit immédiatement du grand, car toute fonction entière est soit polynôme soit elle possède une singularité essentielle à l'infini.
  • Le grand théorème de Picard généralise le théorème de Weierstrass-Casorati.
  • Une récente conjecture de B. Elsner[1] est liée au grand théorème de Picard : soient le disque unité épointé et un recouvrement ouvert de . Sur chaque ouvert , soit une fonction holomorphe injective telle que sur toutes les intersections . Alors ces différentielles se recollent en une 1-forme méromorphe sur le disque . (Si le résidu est nul, la conjecture découle du grand théorème de Picard.)

Note[modifier | modifier le code]

  1. P. 330 de (en) Bernhard Elsner, « Hyperelliptic action integral », Annales de l'Institut Fourier, vol. 49, no 1,‎ , p. 303-331 (lire en ligne).

Article connexe[modifier | modifier le code]

Théorème de Landau, généralisant le « petit » théorème de Picard