Théorème d'Egoroff

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant les mathématiques
Cet article est une ébauche concernant les mathématiques.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Le théorème d’Egoroff, nommé ainsi en hommage à Dmitri Egorov, un physicien et géomètre russe, établit une condition de convergence uniforme dans certains espaces mesurables. Ce théorème peut servir en particulier à montrer le théorème de Lusin pour les fonctions intégrables.

Il s’agit en fait d’un résultat basique de théorie de l’intégration. Il permet en outre de donner une démonstration concise du théorème de convergence dominée.

Énoncé[modifier | modifier le code]

Soit (E, Σ, μ) un espace mesuré vérifiant μ(E) < +∞ (la mesure μ est dite finie). Soit (fn) une suite de fonctions mesurables sur E à valeurs réelles convergeant μ-presque partout vers une fonction f mesurable sur E.

Alors, pour tout ε > 0, il existe A ∈ Σ tel que μ(A) < ε et tel que fn converge uniformément vers f sur E\A (le complémentaire de A dans E).

Pourquoi supposer la mesure finie ?[modifier | modifier le code]

Considérons les fonctions fn suivantes, définies sur l’ensemble des réels muni de la tribu des boréliens et de la mesure de Lebesgue (χ désigne la fonction indicatrice d’un ensemble) : fn = χ[n, n + 1]. Alors, la suite (fn) converge simplement (donc μ-presque partout), mais il n’existe aucun borélien de mesure finie sur le complémentaire duquel la convergence soit uniforme.

Démonstration[modifier | modifier le code]

On considère pour n, k ≥ 1 les ensembles :

Pour tout k ≥ 1, la suite (Ek,n) est croissante (pour l’inclusion), donc :

.

De plus, comme la suite de fonctions (fn) converge simplement μ-p.p. vers f, on a, pour tout k ≥ 1 :

On fixe alors ε > 0. Grâce à la condition μ(E) < +∞, on peut trouver pour chaque k ≥ 1 un entier nk positif tel que

Alors, l’ensemble

convient.

Autre formulation du théorème[modifier | modifier le code]

Ce modèle est-il pertinent ? Cliquez pour en voir d'autres.
Question book-4.svg
Cette section ne cite pas suffisamment ses sources (mai 2013).
Pour l'améliorer, ajoutez des références vérifiables [Comment faire ?] ou le modèle {{Référence nécessaire}} sur les passages nécessitant une source.

Soit E un espace métrique, séparable et localement compact, sur lequel on a une mesure μ σ-finie. Soit (fn) une suite de fonctions mesurables de E dans ℝ convergeant μ-p.p. vers une fonction f mesurable.

Alors, pour tout ε > 0 et pour tout compact K de E, il existe un compact K' inclus dans K tel que μ(K\K') < ε et tel que fn converge uniformément vers f sur K'.

Source[modifier | modifier le code]

(en) Michael E. Taylor (de), Measure Theory and Integration, AMS, p. 34-39